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CHAPTER 1 

GENERAL INTRODUCTION  

 

 

Dissertation Organization 

Synthesis of molecularly imprinted polymeric nanoparticles with tailored 

hydrophobic binding pockets that function in water has not been achieved before. This 

dissertation presents an accumulated experimental investigation into the design and 

application of molecularly imprinted nanoparticles (MINPs) as antibody mimics.  

The dissertation comprises of 7 chapters. Chapter 1 is a review on molecularly 

imprinted polymers (MIPs) and their application as synthetic antibodies. Chapter 2 was 

published in the Journal of the American Chemical Society in 2013. Molecularly imprinted 

nanoparticles (MINPs) were synthesized in the presence of bile salt derivative as templates. 

The MINPs were characterized and the activity of the hydrophobic binding pockets was 

studied using fluorescent spectroscopy and Isothermal Titration Calorimetry (ITC). The 

molecularly imprinted pocket showed high binding affinity and selectivity for its 

corresponding template.  This phenomenon was attributed to highly selective hydrophobic 

binding sites created within the core of MINPs, with shape and size perfectly matching those 

of the corresponding substrates. 

Chapter 3 was published in the Chemical Communications in 2014. Fluorescent 

dansyl groups were installed during naphthyl-templated synthesis of MINPs. Förster 

resonance energy transfer (FRET) within MINPs was studied in order to detect the presence 

of target analytes in water.  Dansyl functionalized MINPs displayed remarkable sensing of 

the corresponding substrate in water, even in the presence of compounds closely related to 

the corresponding substrate in shape and structure. The radius of MINP, approximately 1.5 
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nm (excluding the surface ligands), ensured the right placement of the functional groups in 

the binding sites to generate dansyl-funtionalized MINPs with high affinity and excellent 

selectivity.  

Chapter 4 was published in Chemistry - A European Journal in 2015. MINPs were 

core-functionalized with carboxylic acid in a process that involved covalent polymerization 

in the presence of an o-nitrobenzyl group. The property of the acid-functionalized 

hydrophobic pocket of MINPs was studied using an amine derivative and other analogues of 

the template at various pH values. The pocket displayed a strong interaction with the amine 

derivative at optimal pH. This phenomenon is typical to acid-base fluorescence titration as 

well as the highly functionalized hydrophobic pocket that discriminates against the structural 

analogues. 

Chapter 5 had been submitted to the ACS Biomaterials Science & Engineering.  The 

MINPs technique was used to create synthetic mimics of monoclonal antibodies for 

nonsteroidal anti-inflammatory drugs (NSAIDs). Selective binding and cross reactivity 

studies were performed using Isothermal Titration Calorimetry. The antibodies displayed 

strong binding for their corresponding drugs while exhibiting very low cross-reactivity ratios 

for drugs closely related to the analyte.  The binding selectivity for the synthetic antibodies 

rivaled those of their natural counterparts usually prepared in much lengthier processes. 

Chapter 6 was published in the Supramolecular Chemistry in 2014. Macrocyclic 

oligocholates were synthesized and their properties as transmembrane pore-forming agents 

studied. Assisted by the water molecules within the macrocycles, the rigid cyclic 

macrocycles formed nanopores across lipid membranes that helped to steadily transverse 



www.manaraa.com

3 

 

glucose from the interior to the exterior of the lipid bilayer membranes. Chapter 7 contains 

general conclusions and future direction with the likelihood of widening the scope of MINPs. 

 

Literature Review 

Antibodies are natural receptor molecules that are produced when an immune system 

detects and responds to the presence of an antigen. They are able to recognize and bind to 

their antigens with high affinity and selectivity. For this reason, antibodies have good use in 

therapeutics for treatment and diagnosis of various medical conditions,
1-4

 and in enzyme-

linked immunosorbent assays (ELISA) 
5
 

Molecular imprinting is a technique that has been well documented for its use in 

creating synthetic antibodies that mimic these natural receptors. 
6-9

  The technique allows 

polymerization of functional monomers and cross-linkers around a template, in the presence 

of an initiator, to generate recognition sites with predetermined selectivity and specificity 

within the polymeric network. The beauty of molecular imprinting is that it can be used to 

create synthetic antibodies against virtually any molecule of interest, at least in theory. 

Binding affinities displayed by the recognition sites from molecular imprinting have been 

shown to rival, or even sometimes outperform their natural counterparts.
10

  

The choice of the solvent in the synthesis of MIPs is important as it serves to bring 

together the monomers, template, cross-linker, and initiator into one phase during 

polymerization. The most common solvents used are toluene, chloroform, dichloromethane 

or acetonitrile. Greater template-monomer complexation is normally achieved using less 

polar solvents such as chloroform or toluene when polar interactions such as hydrogen bonds 

are involved in the process.  More polar solvents like water are normally avoided because of 
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their ability to compete with intermolecular forces, thoroughly weakening the much needed 

template-monomer complexation.  Characteristically, the MIPs generated are chemically 

inert, have long-term stability, contain a heterogeneous population of binding sites, and are 

insoluble in water and most organic solvents. With these features, MIPs have been widely 

studied for biomimetic applications such as molecular recognition,
11-13

 molecular sensing,
14, 

15
 catalysis,

16-18
 separation of compounds, 

19-21
 and therapeutics.

22-26
 

To widen the application of molecular imprinting technique, some of the 

shortcomings arising from MIPs need to be addressed. For instance in pharmaceutical and 

biological applications, solubility of the molecules in water is extremely important. Most 

biomolecules tend to become insoluble or lose their activity in organic solvents. The 

heterogeneity of the binding sites acquired from MIPs that make them comparable to 

polyclonal antibodies is another issue to be addressed. 
27, 28

 In fact, molecular imprinting is 

currently generating an increasing biological interest with demand for commercially relevant 

applications, which in turn creates new challenges for researchers to come up with simple 

and practicable solutions.
8
 Immediate need for a new design of molecularly imprinted 

materials that can generate a homogenous population of binding sites with complete 

functionality in water 
29

  is therefore paramount.  

Membrane proteins possess hydrophilic and hydrophobic phases, yet it is a widely 

accepted fact that hydrophobic forces dominate protein-protein interactions,
30, 31

 with van der 

Waals interactions and hydrogen bonds making only a small net contribution to the binding 

energy.
32

 Exploiting these hydrophobic interactions is one way to strengthen the template-

functional monomer complexation in water. Unfortunately, for molecular imprinting, the 

principle of hydrophobic interactions is not easy to explore since hydrophobic materials often 
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bind nonpolar molecules nonspecifically.  In this dissertation I present an accumulated 

research work that has been accomplished using molecular imprinting technology to create 

molecularly imprinted nanoparticles (MINPs) as antibody mimics that are fully compatible 

with water, while bearing a hydrophobic binding pocket in the interior. 
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CHAPTER 2 

 PROTEIN MIMETIC, MOLECULARLY IMPRINTED NANOPARTICLES FOR 

SELECTIVE BINDING OF BILE SALT DERIVATIVES IN WATER 

 

A paper published in Journal of the American Chemical Society 2013, 135, 12552-12555. 

Joseph K. Awino and Yan Zhao 

 

Abstract 

A tripropargylammonium surfactant with a methacrylate-terminated hydrophobic tail 

was combined with a bile salt derivative, divinyl benzene (DVB), and a photocross-linker 

above its critical micelle concentration (CMC). Surface-cross-linking with a diazide, surface-

functionalization with an azido sugar derivative, and free-radical-core-cross-linking under 

UV irradiation yielded molecular imprinted nanoparticles (MINPs) with template-specific 

binding pockets. The MINPs resemble protein receptors in size, complete water-solubility, 

and tailored binding sites in their hydrophobic cores. Strong and selective binding of bile salt 

derivatives was obtained, depending on the cross-linking density of the system.     

 

 Scheme 1. General design for the synthesis of MINPs 
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Introduction 

 

Molecularly imprinted polymers (MIPs) have binding sites potentially 

complementary to guests in size, shape, and distribution of functional groups.
1-3

 They are 

usually prepared by co-polymerization of functional monomers and cross-linkers in the 

presence of a template. Tremendous progress has been made in the last decades in this 

technology, with imprinted materials generated for small and large guests,
1-3

 in macroporous 

polymers and on surface,
4
 for molecular recognition and catalysis,

5,6
 and even unimolecularly 

within dendrimers.
7,8

 

A difficult challenge in molecular imprinting remains the creation of protein-like, 

water-soluble nanoparticles with high binding affinity and selectivity for guests.
9-11

 Part of 

the challenge comes from the general difficulty in constructing synthetic receptors that 

function in water.
12

 Hydrogen bonds as directional intermolecular forces are the most popular 

tools used by chemists for molecular recognition but tend to become ineffective in aqueous 

solution due to competition from the solvent. The hydrophobicity of typical MIPs represents 

another hurdle, as hydrophobic materials often bind nonpolar molecules nonspecifically. 

In this communication, we report a method to prepare molecularly imprinted 

nanoparticles (MINPs) for selective binding of bile salt derivatives in water. Although 

imprinted polymeric nanoparticles have been reported in the literature,
13-15

 our MINP is 

characterized by its discrete binding sites and great resemblance to protein receptors in its 

nanodimension, complete water-solubility, functionalizable exterior, and easily accessible, 

tailor-made hydrophobic binding pocket. We chose bile salts as the template/guest molecules 

because of their important biological properties and water-solubility.
16,17
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Results and Discussion 

 

Design and Synthesis of MINPs 

 

Scheme 2. Preparation of MINP. 

The key design in our MINPs is the doubly cross-linkable surfactant 1. The 

tripropargylated surfactant forms micelles in water with a high density of alkyne on the 

surface. Covalent fixation by a diazide cross-linker using Cu(I) catalysts yields surface-cross-

linked micelles (SCMs) that could be easily functionalized through another round of click 

reaction.
18-21

 Unlike previously synthesized tripropargylated surfactants, however, 1 has a 

polymerizable group (i.e., methacrylate) and thus can undergo free-radical polymerization 

orthogonal to the surface-cross-linking by the click reaction. Surfactant 1 has three alkyne 

groups and cross-linker 3 two azides. In the first stage of the reaction, we performed the 

surface-cross-linking of the micelles using [3]:[1] = 1.2/1, allowing good cross-linking while 

leaving sufficient alkyne groups on the SCM surface for further functionalization (Scheme 

2).
18-21

 The cross-linking was prepared with 10 mM of 1 in water, above its CMC of 0.55 
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mM (Figure 4 in Supporting Information). Our DLS study showed that each SCM contained 

ca. 50 surfactants (Figure 5). Thus, a ratio of [1]:[2] = 1:0.02 in theory placed one template 

(i.e., bile salt derivative 2) within each SCM. The cross-linking chemistry and covalent 

structure of the SCMs have been previously characterized by mass spectrometry and TEM.
18

   

After surface-cross-linking, sugar-derived ligand 4 was added to the reaction mixture. 

The surface functionalization, catalyzed also by Cu(I), made the final MINPs completely 

hydrophilic and easy to purify (vide infra). After surface functionalization, the sample was 

immediately subjected to UV irradiation to co-polymerize the methacrylate of 1 and DVB 

solubilized within the SCMs. The photopolymerization was initiated by DMPA (i.e., 2,2-

dimethoxy-2-phenylacetophenone, a photoinitiator) added together with DVB at the 

beginning of the reaction. After 12 h of irradiation, 
1
H NMR spectroscopy indicated 

complete disappearance of alkenic protons (Figure 6). DLS showed a narrow distribution of 

nanoparticles ca. 4.2 nm in diameter for alkynyl-SCM, 5.9 nm after surface functionalization, 

and 5.0 nm after core-cross-linking (Figure 7).   

Preparation of the MINPs was remarkably simple. The entire synthesis was a one-pot 

reaction over 2 d at room temperature in water. Equally important was the extremely easy 

purification. The nanoparticles could be precipitated from acetone after the core-cross-

linking, due to the sugar-derived surface ligand 4. Repeated washing by methanol/acetic acid 

and methanol completely removed the template (as shown by fluorescence spectroscopy) and 

afforded the final MINPs in ca. 80% yield. The materials obtained were fully soluble in water 

and showed no change in size compared to as synthesized MINPs. 

An important strategy in the MINP synthesis was the combination of a cationic cross-

linkable surfactant and an anionic template. Their electrostatic interactions not only make it 
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easy to incorporate the template inside the micelle and ultimately inside MINP, but also 

orient the hydrophobic part of template within the hydrophobic core of the micelle and the 

carboxylate on the surface. The result is easy removal of the template, which vacates the 

binding site, and facile re-binding of the guest. 

Binding Studies  

The dansyl group of 2 allowed us to study its binding by fluorescence spectroscopy. 

As shown in Figure 1a, upon the addition of MINP(2)—i.e., MINP imprinted against 2—to 

an aqueous solution of 2, the dansyl emission at 550 nm immediately shifted to 475 nm. A 

large blue shift and enhanced emission suggest a more hydrophobic environment around 

dansyl
22

 and are frequently observed when dansyl-labeled compounds are internalized by 

micelles.
23,24

 The fluorescence intensity at 475 nm fitted nicely to a 1:1 binding isotherm to 

give an association constant (Ka) of 3.3 ×10
6
 M

-1
 (Figure 1b). The binding affinity was 

among the highest observed between synthetic hosts and steroid derivatives including bile 

salt derivatives.
17

 

  

Figure 1. (a) Emission spectra of 2 upon the addition of different concentrations of MINP(2). 

[2] = 0.050 μM. The concentration of MINP was calculated based on a M.W. of 49800 g/mol 

determined by DLS (see Figure 9 for details). (b) Nonlinear least squares fitting of the 

emission intensity of 2 at 475 nm to a 1:1 binding isotherm. 
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After confirming effective binding of the template molecule, we studied the binding 

of several other bile salt derivatives (5–9) to understand the selectivity of the MINPs. After 

all, molecular imprinting is meant to create binding sites complementary to the template. 

Among these compounds, 5 and 6 have the acyl group on the amine gradually decrease in 

size and were designed to test the size/shape selectivity of the MINPs.    

 

 

Substrates used 

Table 1 summarizes the binding data of MINPs generated from 2 and 6 as the templates. 

For the majority of the bindings, we employed isothermal titration calorimetry (ITC) because 

most of the guests were not fluorescent. An important benefit of ITC is the simultaneous 

determination of the number of binding sites (N) on the MINP. Figure 3 shows three typical 

ITC titration curves between MINP(2) and bile salt derivatives. Note that, for the fluorescent 

guest (2), the binding constants obtained by the fluorescence titration and ITC showed 

excellent agreement (Table 1, compare entries 1 & 2 and 10 & 11).  

Our first batch of MINPs was prepared with 0.5 equiv of DVB. ITC shows that 

MINP(2) synthesized under this condition bound its template with Ka = 3.5 ×10
6
 M

-1
 (Table 

1, entry 2). As the acyl group decreased in size, the binding deteriorated, with Ka going down 

to 2.5 ×10
6
 for the benzoyl derivative (5) and to 0.05 ×10

6
 when the benzoyl was replaced by 

acetyl. In other words, the template itself fitted the binding pocket better than the other two 

(smaller) analogues, demonstrating the effectiveness of the imprinting. Among the naturally 
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occurring bile salts, 7 showed similar binding as 6 but none of the more hydrophilic 

compounds (8 and 9) gave any detectable binding. 

Table 1. Binding data for MINPs (obtained by ITC unless indicated otherwise)
a 

Entry MINP 
DVB  

(equiv) 
Guest

 Ka 

( 10
6
 M

–1
)
 

– G 

(kcal/mol) 
N 

1 MINP(2) 0.5 2 3.3 ± 0.5
b 

8.9
 

-
b 

2 MINP(2) 0.5 2 3.5 ± 0.2
 

8.9 1.0 

3 MINP(2) 0.5 5 2.5 ± 0.1
 

8.7 0.9 

4 MINP(2) 0.5 6 0.05 ± 0.01
 

6.4 0.7 

5 MINP(2) 0.5 7 0.03 ± 0.01
 

6.0 0.3
c 

6 MINP(6) 0.5 2 1.39 ± 0.02
 

8.4 0.5 

7 MINP(6) 0.5 5 1.99 ± 0.03
 

8.6 0.7 

8 MINP(6) 0.5 6 0.09 ± 0.01
 

6.8 0.8 

9 MINP(6) 0.5 7 0.02 ± 0.01
 

5.9 0.2
c 

10 MINP(2) 1.0 2 3.7 ± 0.8
b 

8.9
 

-
b 

11 MINP(2) 1.0 2 3.5 ± 0.2
 

9.0 1.0 

12 MINP(2) 1.0 5 0.46 ± 0.07
 

7.7 0.7 

13 MINP(2) 1.0 6 0.28 ± 0.04
 

7.4 0.6 

14 MINP(2) 1.0 7 -
d 

-
d
 -

d
 

15 MINP(2) 1.0 10 0.07 ± 0.01
 

6.6
 

0.3
c 

16 MINP(2) 1.0 11 0.0045 ± 0.0002
 

5.0 0.2
c
 

17 MINP(2) 1.0 12 0.28 ± 0.03
 

7.4 0.6 

18 MINP(2) 1.0 2
e
 3.21 ± 0.02

 
8.9 1.0 

19 MINP(2) 1.0 2
f
 3.28 ± 0.02

 
8.9 1.0 

20 MINP(6) 1.0 2 0.27 ± 0.12
 

7.4 0.7 

21 MINP(6) 1.0 5 0.58 ± 0.02
 

7.9 0.6 

22 MINP(6) 1.0 6 1.1 ± 0.2
 

8.2 0.8 

23 MINP(6) 1.0 7 -
d 

-
d
 -

d
 

24 MINP(2)2
g
 1.0 2 3.56 ± 0.01

 
8.9 1.2 

    3.07 ± 0.04
 

8.8 1.2 

a
 The titrations were generally performed in duplicates and the errors between the runs were 

<10%. Binding was measured in 50 mM Tris buffer (pH = 7.4) with 150 mM NaCl unless 

otherwise noted. Compounds 8 and 9 showed no detectable binding by ITC with any of the 

MINPs. 
b
 Binding data were obtained from fluorescence titration and thus N was not available. 

c
 The weak binding made the curve fitting not as accurate. 

d
 Binding (Ka <1000 M

-1
) was not 

detectable by ITC. 
e
 Binding was measured in 50 mM Tris buffer (pH = 7.4) with 200 mM 

NaCl. 
f
 Binding was measured in 50 mM Tris buffer (pH = 7.4) without NaCl. 

g
 The MINPs 

were prepared with [1]:[2] = 1:0.04, i.e., twice as much of the template was employed as 
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compared to other examples. The two binding constants were for the two independent binding 

sites, respectively. 

 

Figure 2. ITC titration curves obtained at 298 K for the binding of 2 (a), 5 (b), and 6 (c) by 

MINP(2) prepared with 1 equiv of DVB. The data correspond to entries 11–13 in Table 1. 

Additional ITC titration curves can be found in the Supporting Information (Figures 9–13). In 

general, an aqueous solution of an appropriate bile salt in Tris buffer (50 mM Tris, 150 mM 

NaCl, pH = 7.4) was injected in equal steps into 1.428 mL of the corresponding MINP 

solution (4.0 mg/mL) in the same buffer. The top panel shows the raw calorimetric data. The 

area under each peak represents the amount of heat generated at each ejection and is plotted 

against the molar ratio of the MINP to the bile salt. The smooth solid line is the best fit of the 

experimental data to the sequential binding of N equal and independent binding sites on the 

MINP. The heat of dilution for the bile salt, obtained by adding the bile salt to the buffer, was 

subtracted from the heat released during the binding. Binding parameters were auto-generated 

after curve fitting using Microcal Origin 7.  

We then synthesized MINPs using the smaller bile salt derivative 6 as the template. 

The result was somewhat disappointing. On one hand, the largest bile salt (2) showed weaker 
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binding to MINP(6) than to MINP(2), as expected from the smaller size of the binding pocket 

in the former (Table 1, compare entries 2 and 6). On the other hand, although 2 bound to 

MINP(6) less strongly than 5, both compounds bound much more strongly than 6 itself (Ka = 

0.09 ×10
6
 M

-1
). It appears that both hydrophobic effects and size/shape selectivity were 

playing roles in this MINP. Essentially, although the binding pocket of MINP(6) was smaller 

than that of MINP(2), the stronger hydrophobicity of 2 and 5 gave them a larger driving force 

to occupy the hydrophobic pocket than the somewhat hydrophilic 6. Whereas 6 might fit the 

binding site of MINP(6) better than the larger bile salts, its weaker hydrophobicity lowers its 

tendency to enter the pocket. 

Not satisfied with the above results, we decided to increase the amount of DVB to 1 

equiv to 1 for the core-cross-linking. This was the highest amount of DVB that could be 

solubilized by the surfactant in water. To our delight, binding selectivity increased 

dramatically. Using this more highly cross-linked MINP(2), we were able to distinguish the 

size of the acyl group easily: the dansyl, benzoyl, and acetyl derivatives afforded Ka of 3.5, 

0.46, and 0.28 ×10
6
 M

-1
, respectively (Table 1, entries 11–13). Lithocholate 7 displayed no 

binding at all.  

For the more highly cross-linked MINP(2), we also studied several non-steroid 

aromatic guests (10–12) to understand the binding selectivity. Dansyl sulfonate 10 in a sense 

was a “half-match” for the binding site generated from dansylated 2. Its Ka (= 0.07 ×10
6
 M

-1
) 

was reduced by ca. 50 times from that of 2. A further decrease of the hydrophobic size made 

naphthalene-1-carboxylate (11) an even poorer guest, whose Ka was only 0.0045 ×10
6
 M

-1
 or 

about 800 times weaker than that of 2. As soon as the guest size increased, binding resumed, 
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as pyrenebutyrate 12 displayed identical binding constant to that of 6 (Ka = 0.28 ×10
6
 M

-1
) or 

1/13 of that of 2. 

All the bindings were measured in 50 mM Tris buffer with 150 mM NaCl. When the 

salt concentration was raised to 300 mM, the MINPs were found to precipitate out of the 

buffer. In 200 mM and 0 mM NaCl (Table 1, entries 18 and 19), similar binding constants 

were obtained for the MINP(2)–2 complex and were essentially within the experimental error 

from that in 150 mM NaCl (entry 11). We attributed the insensitivity of binding to salt (at 

least over 0–200 mM NaCl) to the two opposing binding forces present in the system: 

whereas salt tends to strengthen hydrophobic interactions, it weakens the electrostatic 

interactions between the positively charged MINP and the negatively charged guest.   

Importantly, when 1 equiv DVB was used in the core-cross-linking, selective binding 

pockets could be created for the smaller bile salt 6 as well. As the acyl group became smaller, 

the bile salts exhibited a consistent increase in their binding affinity toward the highly cross-

linked MINP(6), with Ka increasing from 0.27 ×10
6
 to 0.58 ×10

6
 and further to 1.1 ×10

6
 M

-1
 

(entries 20–22). This trend was opposite to the hydrophobicity of the guest and different from 

what was observed for MINP(6) prepared with 0.5 equiv DVB. Clearly, the higher cross-

linking density of the material significantly enhanced the rigidity of the binding pockets. 

Under this condition, even though the more hydrophobic guests (2 and 5) possess stronger 

thermodynamic “desires” to enter the hydrophobic pocket, they were excluded most likely 

because of their misfit to the less "forgiving" binding sites. 

It should be pointed out that, unlike conventional MIPS and the reported molecularly 

imprinted nanoparticles,
13-15

 our MINPs on average possessed approximately one guest-

binding site per particle. Except when weak binding made the curve fitting less accurate, the 
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number of independent binding sites (N) obtained by ITC was close to 1 in most cases for the 

MINPs (Table 1). This feature comes directly from the stoichiometry of template used in the 

synthesis relative to the micelle aggregation number of 1. 

 

Figure 3. ITC titration curves obtained at 298 K for the binding of 2 by MINP(2)2 prepared 

with 1 equiv of DVB. The data correspond to entry 20 in Table 1. The smooth solid line is the 

best fit of the experimental data to the sequential binding of 2 equal and independent binding 

sites on the MINP.  

To demonstrate the tunability in binding stoichiometry, we prepared MINP(2)2 with 

[1]:[2] = 1:0.04, i.e., doubling the amount of template employed during the imprinting. 

Figure 3 shows the ITC titration curve for the re-binding of 2. The distinctively different 

curve as compared to those in Figure 2 fitted best to a binding model with two independent 

binding sites per nanoparticle. As shown by entry 20 in Table 1, the two binding sites had 

very similar binding constants (Ka = 3.56 and 3.07 ×10
6
 M

-1
), which were essentially the 

same as that of the MINP(2)–2 complex (Ka = 3.5 ×10
6
 M

-1
). Thus, the same hydrophobic 

and electrostatic interactions were behind all these binding events, whether the MINP 

contained one or two binding sites.   
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Conclusion 

To summarize, we have developed a facile method to create protein-like, water-

soluble receptors for selective binding of bile salt derivatives in water. Unlike proteins, 

however, these nanoparticles are extremely robust and have outstanding tolerance for organic 

solvents and adverse temperature/pH conditions. The robustness comes directly from their 

highly cross-linked nature and was demonstrated by our washing conditions in the 

purification. Their nanodimension, readily modified structure,
18-21,25-27

 and excellent 

properties of molecular recognition should make them highly useful materials for chemistry 

and biology. 
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Experimental Section 

 

General Method 

For spectroscopic purpose, methanol, hexanes, and ethyl acetate were of HPLC grade.  

All other reagents and solvents were of ACS-certified grade or higher, and were used as 

received from commercial suppliers.  Routine 
1
H and 

13
C NMR spectra were recorded on a 

Bruker DRX-400 or on a Varian VXR-400 spectrometer.  MALDI-TOF mass was recorded 

on a Thermobioanalysis Dynamo mass spectrometer.  UV-vis spectra were recorded at 

ambient temperature on a Cary 100 Bio UV-visible spectrophotometer.  Fluorescence spectra 

were recorded at ambient temperature on a Varian Cary Eclipse Fluorescence 

spectrophotometer.  ITC was performed using a MicroCal VP-ITC Microcalorimeter with 

Origin 7 software and VPViewer2000 (GE Healthcare, Northampton, MA). 
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Syntheses 

Syntheses of compounds 3,
28

 4,
29

 13,
30

 15,
31

 and 2
30

 were previously reported. 

 

Scheme 3. Synthesis of compound 1 

 

 

Scheme 4. Synthesis of compound 5-COOH 

 

 Scheme 5. Synthesis of compound 6-COOH 

 

General procedure (hydrolysis of methyl ester).  The methyl ester of a cholate derivative 

(0.10 mmol) was dissolved in a mixture of THF (1 mL) and MeOH (1 mL). A solution of      

2 M LiOH (0.5 mL, 1 mmol) was added. The reaction was monitored by TLC and was 

complete in 10–24 h. The organic solvents were removed by rotary evaporation. After 
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addition of a dilute HCl solution (0.05 M, 30 mL), the precipitate formed was collected by 

suction filtration or centrifugation, washed with water, and dried in vacuo. 

Compound 1. Triflic anhydride (0.35 mL, 2.1 mmol) and 2,6-lutidine (0.24 mL, 2.1 mmol) 

were added to 5 mL of dry dichloromethane, which was cooled at -20 °C. The cooling bath 

was removed and compound 13 (430 mg, 1.6 mmol) in CH2Cl2 (2 mL) was added dropwise 

to the stirred solution. After being stirred at room temperature for 90 min, the reaction 

mixture was diluted with CH2Cl2 (5 mL). The organic layer was washed with 1 M HCl (10 

mL) and water (2 × 10 mL), dried with magnesium sulfate, filtered, and concentrated by 

rotary evaporation to give the triflate as yellowish oil (600 mg, 93 %). The oil was dissolved 

in dry THF (10 mL) and tripropargylamine (0.3 mL, 2.1 mmol) added dropwise. After being 

stirred at room temperature overnight, the reaction mixture was concentrated by rotary 

evaporation and the residue was purified by column chromatography over silica gel using 1: 

10 methanol/CH2Cl2 as eluent to afford colorless oil (575 mg, 72 %). This oil was dissolved 

in methanol (5 mL), followed by the addition of excess sodium bromide solution in 5 mL of 

water (3.86 g, 37.5 mmol).  After being stirred for 6 h, the reaction mixture was diluted with 

CH2Cl2 (10 mL). The organic layer was washed with water (2 × 30 mL), dried with sodium 

sulfate, and concentrated by rotary evaporation. The process was repeated one more time to 

afford a colorless oil (430 mg, 100 %). 
1
H NMR (400 MHz, CDCl3, δ): 6.02 (d, J ꞊ 1.6 Hz, 

1H), 5.47 (d, J ꞊ 1.6 Hz, 1H), 4.89 (d, J ꞊ 2.4 Hz, 6H),  4.06 (t, J ꞊ 1.6 Hz, 2H), 3.40 (t, J ꞊ 6.0 

Hz, 2H), 2.8 (s, 3H), 1.87 (s, 3H), 1.53-1.43 (series of m, 8H), 1.26 (m, 12H). 
13

C NMR (100 

MHz, CDCl3, δ): 167.6, 136.5, 125.2, 82.5,  82.5,  82.5, 70.6, 70.6, 70.6, 64.5, 60.8, 50.5, 

50.5, 50.5, 32.3, 29.3, 29.2, 29.2, 29.1, 29.1, 28.8, 28.2, 25.6, 25.4, 17.9. ESI-HRMS (m/z): 

[M - Br]
+
 calcd for C25H38 NO2, 384.2897; found, 384.2903. 
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Compound 5-COOH. A solution of DCC (18.6 mg, 0.09 mmol) in THF (1 mL) was added 

to a stirred solution of benzoic acid (10 mg, 0.082 mmol) and N-hydroxysuccinimide (10.4 

mg, 0.09 mmol) in THF (5 mL). After 10 h at room temperature, the white precipitate formed 

was removed by filtration.   Compound 15 (50 mg, 0.12 mmol) in THF (1 mL) was added to 

the filtrate and the reaction mixture was stirred overnight. After THF was removed by rotary 

evaporation, the residue was purified by preparative TLC using 1:10 methanol/CH2Cl2=1/10) 

as developing solvent to give a white powder (30.3 mg, 96 %). 
1
H NMR (400 MHz, 

CDCl3/CD3OD ꞊ 2:1, δ): 7.67 (t, J ꞊ 2.0 Hz, 2H), 7.39 (m, 3H), 5.93 (d, J ꞊ 8.0 Hz, 1H), 3.94 

(t, J ꞊ 6.8 Hz, 1H), 3.82 ( m, 1H), 3.65 (s, 3H), 2.4 – 1.55 (series of m), 1.18 (s, 2H), 0.91 (t, J 

꞊ 6.4 Hz, 3H), 0.87 (s, 3H), 0.64 (s, 3H). The methyl ester (16) was hydrolyzed according to 

the general procedure above to afford a white powder (30 mg, 100 %). 
1
H NMR (400 MHz, 

CDCl3, δ): 7.67 (t, J ꞊ 2.0 Hz, 2H), 7.39 (m, 3H), 5.93 (d, J ꞊ 8.0 Hz, 1H), 3.94 (t, J ꞊ 6.8 Hz, 

1H), 3.82 ( m, 1H), 3.40 (br, 1H), 2.4 – 1.55 (series of m), 1.18 (s, 2H), 0.91 (t, J ꞊ 6.4 Hz, 

3H), 0.87 (s, 3H), 0.64 (s, 3H). 
13

C NMR (100 MHz, CDCl3/CD3OD ꞊ 1:1, δ): 175.4, 170.8, 

134.9, 131.3, 128.2, 128.2, 126.9, 126.9,  72.8, 67.9, 51.2, 50.1, 48.6, 48.3, 48.1, 46.7, 46.2, 

43.9, 43.6, 39.2, 35.3, 34.6, 34.4, 30.9, 30.8, 28.1, 26.4, 23.0, 22.3, 16.8, 12.3.  ESI-HRMS 

(m/z): [M - H]
-
 calcd for C31H44NO5, 510.3225; found, 510.3227. 

Compound 6-COOH. Acetic anhydride (25 μL, 0.26 mmol) was added to a solution of 

compound 15 (100 mg, 0.24 mmol) and pyridine (46 μL, 0.26 mmol) in CH2Cl2 (5 mL) 

under N2. The reaction mixture was stirred at room temperature for 1 h and diluted with 

CH2Cl2 (5 mL). The resulting organic solution was washed with 1 M HCl (3 mL) and water 

(2 × 10 mL) and was concentrated by rotary evaporation to give a white powder (110 mg, 

100 %). 
1
H NMR (400 MHz, CDCl3/CD3OD ꞊ 2:1, δ): 5.34 (br, 1H), 3.97 (t, J ꞊ 2.8 Hz, 1H), 
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3.85 (t, J ꞊ 2.4 Hz, 1H), 3.65 (s, 3H), 2.40 – 2.01 (series of m), 1.9 (s, 3H), 1.75 -1.19 (series 

of m), 1.18 (s, 2H), 0.91 (t, J ꞊ 6.4 Hz, 3H), 0.87 (s, 3H), 0.64 (s, 3H). The methyl ester (17) 

was hydrolyzed according to the general procedure above to afford a white powder (108 mg, 

100%). 
1
H NMR (400 MHz, CDCl3/CD3OD ꞊ 1:1, δ): 5.34 (br, 1H), 3.97 (t, J ꞊ 2.8 Hz, 1H), 

4.85 (t, J ꞊ 2.4 Hz, 1H), 4.55 (br, 1H), 3.40 – 3.01 (series of m), 2.9 (s, 3H), 2.75 -2.19 (series 

of m), 2.18 (s, 2H), 1.91 (t, J ꞊ 6.4 Hz, 3H), 1.87 (s, 3H), 1.64 (s, 3H). 
13

C NMR (100 MHz, 

CDCl3/CD3OD ꞊ 1:1, δ): 176.8, 170.5, 72.7, 67.8,  49.1, 48.6, 48.3, 48.1, 46.7, 46.2, 45.7, 

43.9, 43.6, 39.2, 35.3, 34.6, 34.4, 30.9, 30.8, 30.7, 28.1, 26.4, 23.0, 22.3, 16.8, 12.3.  ESI-

HRMS (m/z): [M + H] 
+
 calcd for C26H44NO5, 450.3219; found, 450.3215. 

Determination of Critical Micelle Concentration (CMC) of Compound 1. The 

determination of CMC was carried out according to literature procedures.
32

 Specifically, a 

stock solution was prepared by adding surfactant 1 (9.3 mg, 0.02 mmol) to 2.0 mL of an 

aqueous solution of pyrene (1.0 × 10
-7

 M). To 11 separate vials, 100, 90, 80, 70, 60, 50, 40, 

30, 20, 10, and 5 μL of the above stock solution were added. Millipore water was added to 

each vial to make the total volume 2.0 mL. Fluorescence spectra were recorded with the 

excitation wavelength at 336 nm. The final results were based on duplicate experiments with 

separately prepared solutions. 

Preparation of Molecularly Imprinted Nanoparticles (MINPs). To a micellar solution of 

compound 1 (9.3 mg, 0.02 mmol) in D2O (2.0 mL), divinylbenzene (DVB, 2.8 μL, 0.02 

mmol), compound 2-COONa in D2O (10 μL of a solution of 26.5 mg/mL, 0.0004 mmol), and 

2,2-dimethoxy-2-phenylacetophenone (DMPA,10 μL of a 12.8 mg/mL solution in DMSO, 

0.0005 mmol) were added. The mixture was subjected to ultrasonication for 10 min before 

compound 3 (4.1 mg, 0.024 mmol), CuCl2 (10 μL of a 6.7 mg/mL solution in D2O, 0.0005 
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mmol), and sodium ascorbate (10 μL of a 99 mg/mL solution in D2O, 0.005 mmol) were 

added. After the reaction mixture was stirred slowly at room temperature for 12 h, compound 

4 (10.6 mg, 0.04 mmol), CuCl2 (10 μL of a 6.7 mg/mL solution in D2O, 0.0005 mmol), and 

sodium ascorbate (10 μL of a 99 mg/mL solution in D2O, 0.005 mmol) were added. After 

being stirred for another 6 h at room temperature, the reaction mixture was transferred to a 

glass vial, purged with nitrogen for 15 min, sealed with a rubber stopper, and irradiated in a 

Rayonet reactor for 12 h. 
1
H NMR spectroscopy was used to monitor the progress of 

reaction. The reaction mixture was poured into acetone (8 mL). The precipitate was collected 

by centrifugation and washed with a mixture of acetone/water (5 mL/1 mL) three times. The 

crude produce was washed by methanol/acetic acid (5 mL/0.1 mL) three times until the 

emission peak at 480 nm (for the dansyl) disappeared and then with excess methanol. The off 

white powder was dried in air to afford the final MINPs (16 mg, 80%).  

0.9

0.95

1

1.05

1.1

0 0.2 0.4 0.6 0.8 1 1.2

I 3
 /

 I
1
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Figure 4. Pyrene I3/I1 ratio as a function of [1]. [pyrene] = 0.1 μM. The five vibronic bands 

of pyrene respond to environmental polarity differently. The intensity ratio between the third 

(~384 nm) and the first band (~372 nm) is particularly sensitive to environmental changes. 
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Figure 6. Distribution of the molecular weights of the alkynyl-SCMs and the correlation 

curve for DLS. The molecular weight distribution was calculated by the PRECISION 

DECONVOLVE program assuming the intensity of scattering is proportional to the mass of 

the particle squared. If each unit of building block for the alkynyl-SCM is assumed to contain 

one molecule of compound 1 (MW = 465 g/mol), 1.2 molecules of compound 3 (MW = 172 

g/mol), and one molecule of DVB (MW = 130 g/mol), the molecular weight of the alkynyl-

SCM translates to 50 [= 40400/(465+1.2×172+130)] of such units.  

Polymerizable groups

c

a

b

 

Figure 6. 
1
H NMR spectra of (a) 1 in CDCl3, (b) alkynyl-SCM in D2O, (c) MINP(2) in D2O. 
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Figure 7. Distribution of the hydrodynamic diameters of the nanoparticles in water as 

determined by DLS for (a) alkynyl-SCM (b) surface-functionalized SCM, and (c) MINP(2) 

after purification. 

 

Figure 8. Distribution of the molecular weights of MINP(2) and the correlation curves for 

DLS. The molecular weight distribution was calculated by the PRECISION DECONVOLVE 

program assuming the intensity of scattering is proportional to the mass of the particle 

squared. If each unit of building block for the MINP(2) is assumed to contain one molecule 

of compound 1 (MW = 465 g/mol), 1.2 molecules of compound 3 (MW = 172 g/mol), one 

molecule of DVB (MW = 130 g/mol), and 0.8 molecules of compound 4 (MW = 264 g/mol), 

the molecular weight of MINP(2) translates to 49 [= 49800/(465+1.2×172+130+0.8×264)] of 

such units.   
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Figure 9. ITC titration curves obtained at 298 K for the binding of 2 (a), 5 (b), 6 (c), and 7 (d) 

by MINP(2) prepared with 0.5 equiv of DVB. The data correspond to entries 2–5 in Table 1. 

The top panel shows the raw calorimetric data. The area under each peak represents the 

amount of heat generated at each ejection and is plotted against the molar ratio of the MINP to 

the bile salt. The solid line is the best fit of the experimental data to the sequential binding of 

N equal and independent binding sites on the MINP. The heat of dilution for the bile salt, 

obtained by adding the bile salt to the buffer, was subtracted from the heat released during the 

binding. Binding parameters were auto-generated after curve fitting using Microcal Origin 7. 

 

 

 

 

 

 

Figure 10. ITC titration curves obtained at 298 K for the binding of 2 (a), 5 (b), 6 (c), and 7 

(d) by MINP(6) prepared with 0.5 equiv of DVB. The data correspond to entries 6–9 in Table 

1. The top panel shows the raw calorimetric data. The area under each peak represents the 
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amount of heat generated at each ejection and is plotted against the molar ratio of the MINP to 

the bile salt. The solid line is the best fit of the experimental data to the sequential binding of 

N equal and independent binding sites on the MINP. The heat of dilution for the bile salt, 

obtained by adding the bile salt to the buffer, was subtracted from the heat released during the 

binding. Binding parameters were auto-generated after curve fitting using Microcal Origin 7. 

 

 

 

 

 

 

 

Figure 11. ITC titration curves obtained at 298 K for the binding of 10 (a), 11 (b), and 13 (c) 

by MINP(2) prepared with 1.0 equiv of DVB. The data correspond to entries 15–17 in Table 

1. The top panel shows the raw calorimetric data. The area under each peak represents the 

amount of heat generated at each ejection and is plotted against the molar ratio of the MINP to 

the bile salt. The solid line is the best fit of the experimental data to the sequential binding of 

N equal and independent binding sites on the MINP. The heat of dilution for the bile salt, 

obtained by adding the bile salt to the buffer, was subtracted from the heat released during the 

binding. Binding parameters were auto-generated after curve fitting using Microcal Origin 7. 
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Figure 12. ITC titration curves obtained at 298 K for the binding of 2 by MINP(2) prepared 

with 1 equiv of DVB in 50 mM Tris buffer (pH = 7.4) with (a) 200 mM and (b) 0 mM NaCl. 

The data correspond to entries 18–19 in Table 1. The top panel shows the raw calorimetric 

data. The area under each peak represents the amount of heat generated at each ejection and is 

plotted against the molar ratio of the MINP to the bile salt. The solid line is the best fit of the 

experimental data to the sequential binding of N equal and independent binding sites on the 

MINP. The heat of dilution for the bile salt, obtained by adding the bile salt to the buffer, was 

subtracted from the heat released during the binding. Binding parameters were auto-generated 

after curve fitting using Microcal Origin 7. 
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Figure 13. ITC titration curves obtained at 298 K for the binding of 2 (a) 5 (b), and 6 (c) by 

MINP(6) prepared with 1 equiv of DVB. The data correspond to entries 20–22 in Table 1. The 

top panel shows the raw calorimetric data. The area under each peak represents the amount of 

heat generated at each ejection and is plotted against the molar ratio of the MINP to the bile 

salt. The solid line is the best fit of the experimental data to the sequential binding of N equal 

and independent binding sites on the MINP. The heat of dilution for the bile salt, obtained by 

adding the bile salt to the buffer, was subtracted from the heat released during the binding. 

Binding parameters were auto-generated after curve fitting using Microcal Origin 7. 
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1 
H NMR of compound 1 

 
 

 

 
13 

C NMR of compound 1 
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1 
H NMR of compound 16 
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H NMR of compound 5-COOH 
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13 
C NMR of compound 5-COOH 
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H NMR of compound 17 
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1 
H NMR of compound 6-COOH 

 
 

 

 
13 

C NMR of compound 6-COOH 
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CHAPTER 3 

MOLECULARLY IMPRINTED NANOPARTICLES AS TAILOR-MADE SENSORS FOR 

SMALL FLUORESCENT MOLECULES 

 

A paper published in Chemical Communication, 2014, 50, 5752-5755. 

Joseph K. Awino and Yan Zhao 

 

Abstract 

Water-soluble nanoparticles molecularly imprinted against naphthyl derivatives could 

bind the templates with high affinity and excellent selectivity among structural analogues in 

aqueous solution. Fluorescent dansyl groups installed during template polymerization 

allowed these nanoparticles to detect the presence of the target analytes by Förster resonance 

energy transfer.    

FRET-Based

MIP Sensor

 

Scheme 1. General design 
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Introduction 

Chemical sensors are important to a wide range of applications including clinical 

diagnostics, environmental remediation, drug analysis, and chemical detection. Sensors 

ideally should detect specific chemicals of interest with minimal interference from other 

chemicals present in the same sample. What is vital to the sensing specificity is typically a 

molecular-recognition unit in the sensor that binds the analyte with high affinity and 

selectivity.         

Molecular imprinting is a technique to create guest-complementary binding sites, 

most often in a cross-linked polymer matrix.
1
 It usually involves polymerization of a mixture 

of imprint molecules (i.e., the templates), functional monomers, and cross-linkers into a 

highly cross-linked material. Template-complementary binding sites are created upon the 

removal of the templates from the polymer matrix. Because molecularly imprinted polymers 

(MIPs) potentially can be prepared for any molecule that can form a suitable template–

functional monomer complex, molecular imprinting is a powerful technique to prepare 

synthetic receptors.  

A key benefit of MIP is its predetermined binding selectivity (for the template or its 

mimics). This feature is enormously useful to molecular sensing in which the molecules of 

interest are typically known.
1c

 Indeed, when coupled with optical,
2
 mass,

3
 refractive index,

4
 

or other signal-transducing mechanisms, MIPs have been used as sensors for a variety of 

analytes.
5
    

We recently reported a method to prepare molecularly imprinted nanoparticles 

(MINPs)
6
 by surface–core-doubly cross-linking surfactant micelles in water.

7
 The 

nanoparticles imprinted against a bile salt derivative were found to bind the template among 
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its structural analogues with excellent selectivity and affinity. Because of the radius of the 

MINP (ca. 1.5 nm for hydrophobic core and 2.5 nm including the surface ligands) is within 

the Förster distance (R0) of many fluorophore pairs,
8
 we reasoned that a MINP functionalized 

with an appropriate fluorophore should be able to detect analytes through Förster resonance 

energy transfer (FRET). As pointed out in a recent review, “ability to spectroscopically 

characterize binding sites” is a highly desirable feature for MIPs, especially if the materials 

can be made “either soluble or insoluble” and “readily processable”.
9 

 

Results and Discussion 

Design and Synthesis of MINPs 

 

            Scheme 2. Preparation of fluoro-MINP 
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To demonstrate the concept, we first prepared an aqueous solution of cross-linkable 

surfactant 1, template 2 (or 3), and fluorescent dansyl derivative 4 that has two polymerizable 

methacrylate groups (Scheme 2). Surfactant 1 has a critical micelle concentration (CMC) of 

0.55 mM and aggregation number of 50 in water.
6
 With [1] = 10 mM and [1]/[2 or 3] = 50/1, 

the resulting MINP was expected to contain on average one binding site per particle. To 

enable the resulting MINP to detect the template (the target analyte) by FRET, we chose to 

employ a naphthalene-containing template (2 or 3) that could serve as a FRET donor for the 

dansyl acceptor to be incorporated into the MINP through co-polymerization of 4. 

 The details of the MINP synthesis and characterization are reported in the 

Experimental Section (Fig. 3–9, Experimental Section). As shown by Scheme 1, the 

micelles of 1 were first cross-linked via click chemistry on the surface by diazide 5 using 

Cu(I) catalysts. At this point, the organic additives including 4, DVB (divinylbenzene), 

and DMPA (2,2-dimethoxy-2-phenylaceto-phenone, a photoinitiator) should simply be 

trapped within the SCM. Immediately after the surface-cross-linking, a sugar-derived 

azide (6) was added to the mixture to functionalize the surface of the alkynyl-SCM. The 

alkynyl-SCM had extra alkynes on the surface because the ratio of [1]/[5] was 1.2 in the 

reaction mixture while surfactant 1 had 3 alkynyl groups and cross-linker 5 only 2 

azides. After surface-functionalization, UV irradiation triggered free radical 

polymerization of the methacrylate groups of 1 and 4, as well as DVB solubilized within 

the SCM core. The micelles were able to solubilize one DVB per surfactant and this high 

level of DVB was found to enhance the rigidity of the core and the binding selectivity.
6
 

At the end of the core-cross-linking, the fluoro-MINPs were recovered by precipitation 

from acetone, followed by methanol washing (to remove the imprint molecules).  
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Molecular sensing 

Fig. 1a,c shows normalized excitation spectra of fluoro-MINP(2) and fluoro-MINP(3) 

in the presence of different concentrations of 2 and 3 in Tris buffer (pH 7.4), when the dansyl 

emission at 500 nm was monitored. In the absence of binding, the donor fluorophore (2 or 3) 

would stay largely in solution, far from the dansyl acceptors imbedded within the fluoro-

MINPs. Titration of the fluoro-MINP with 2 or 3 would not affect the excitation spectrum (of 

the dansyl) since all the emission would be caused by direct excitation of the dansyl in this 

scenario. In the event of a binding, the donor molecule bound by the MINP would absorb 

light, undergo excitation, and transfer the excited energy to the dansyl acceptor in the same 

nanoparticle. In the latter case, the donor would contribute to the acceptor emission and thus 

peaks corresponding to the donor absorption would appear in the excitation spectrum of the 

dansyl acceptor. 

 

 

Figure 1. (a) Normalized excitation spectra of Fluoro-MINP(2) in the presence of different 

concentrations of 2 and (b) the excitation spectra with the contribution of Fluoro-MINP(2) 
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subtracted. (c) Normalized excitation spectra of Fluoro-MINP(3) in the presence of different 

concentrations of 3 and (d) the excitation spectra with the contribution of Fluoro-MINP(3) 

subtracted. The emission for the dansyl acceptor at 500 nm (λem) was monitored as the 

excitation wavelength (λex) was scanned from 250 to 450 nm. [MINP] = 2.5 μM in 50 mM 

Tris buffer (pH = 7.4) 

We chose to have a 2:1 ratio of dansyl derivative 4 to the template (2 or 3) so that 

each MINP had 2 dansyl groups on average and a good chance existed for the naphthyl 

template to be within the Förster distance (R0 = 2.2 nm)
10

 of the dansyl acceptor during 

rebinding. Indeed, the characteristic contribution from the donor absorption (@ 290–310 nm) 

appeared when the template molecule was added to the “correct” fluoro-MINP (Fig. 1a,c). 

When the contribution of the acceptor (i.e., the fluoro-MINP) was subtracted, a distinctive 

peak near 300–310 nm from the donor (2 or 3) appeared (Fig. 1b,d), indicative of increasing 

FRET with higher concentrations of the template added to the solution.  When the “wrong” 

template was added, e.g., 3 to fluoro-MINP(2) or 2 to fluoro-MINP (3), as shown by Fig. 10 

and 11, the FRET signal was either absent or much weaker. Similar observations were made 

when the MINPs were titrated with other structural analogues, including 7 that only differed 

from 2 by the position of the carboxylate (Fig. 12–19).  

 

Isothermal Titration Calorimetry 

The above results indicate that non-specific binding (from generic hydrophobic and 

electrostatic interactions) between the MINPs and the negatively charged template analogues 

could not trigger FRET, even those with very similar structures.
11

 FRET was apparently a 

result of strong and specific binding, which was confirmed by isothermal titration 
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calorimetry (ITC) shown in Fig. 2a,b. With ITC, we could obtain the binding data even for 

those structural analogues that caused no change in the fluorescence excitation spectra. 

Additionally, the technique allowed us to determine the number of binding sites (N) on the 

MINP. 

 

Figure 2. ITC titration curve obtained at 298 K for the bindings between (a) Fluoro-MINP(2) 

and 2 and (b) between Fluoro-MINP(3) and 3 in 50 mM Tris buffer (pH 7.4). Additional ITC 

curves (Fig. 20–21) are reported in the Experimental Section. 

 

Table 1. Binding data for MINPs obtained by ITC
a 

Entry MINP Guest Ka 

( 106 M–1) 

–ΔG 

(kcal/mol) 
N 

1 MINP(2) 2 0.43 ± 0.01 7.7 1.1 

2 MINP(2) 3 -b -b -b 

3 MINP(2) 7 0.0023 ± 0.0004 4.6 0.8 

4 MINP(2) 8 0.0015 ± 0.0001 4.3 1.1 

5 MINP(2) 9 0.0033 ± 0.0003 4.8 1.0 

6 MINP(2) 10 0.0011 ± 0.0001 4.1 0.8 

7 MINP(3) 2 0.0070 ± 0.0002 5.2 1.2 

8 MINP(3) 3 1.00 ± 0.04 8.2 1.2 

9 MINP(3) 7 0.0015 ± 0.0002 4.3 1.0 

10 MINP(3) 8 0.0095 ± 0.0002 5.4 0.7 

11 MINP(3) 9 0.0082 ± 0.0010 5.3 1.1 

12 MINP(3) 10 0.0095 ± 0.0003 5.4 0.5 

a
 The titrations were generally performed in duplicates and the errors in Ka between the runs 

were generally < 20%. Binding was measured in 50 mM Tris buffer (pH = 7.4). 
b
 Binding 

was not detectable by ITC.
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The ITC binding data in Table 1 shows that the MINPs were highly selective in their 

binding. For MINP(2), the template itself gave a binding constant of Ka = 0.43 × 10
6
 M

-1
, 

which translates to a binding free energy of –ΔG = 7.7 kcal/mol. The affinity was quite 

remarkable for a small molecule like 2 and should have resulted from the combination of 

hydrophobic interactions and electrostatic interactions between the oppositely charged MINP 

and the guest. None of the other anionic analogues, whether larger or smaller than 2, showed 

any comparable binding; all the Ka values were at least two orders of magnitude lower that 

for the template itself (Table 1, entries 2–6). 

Convinced of the highly selective binding, we examined the FRET signals in the 

presence of potentially interfering structural analogues. Because of the stronger FRET of 

MINP(3) with its template, we examined the FRET detection of 3 in the presence of various 

structural analogues as potential interfering species. When 2 μM of 3 was added to a solution 

of 0.50 μM MINP(3), FRET from the donor to the MINP acceptor was clearly visible in the 

excitation spectrum (Fig. 3a, compare the MINP spectra before and after the addition of 

compound 3; the dotted spectrum in black was obtained by subtracting the MINP spectrum 

from that of the MINP plus 3, showing λmax = 310 nm from the donor).
14

 Significantly, when 

2–12 μM of compound 2 (Fig. 3a), 7 (Fig. 22), or 9 (Fig. 23) was added,
15

 the excitation 

spectra showed essentially no change. Compound 8 did show some interference (Fig. 3b). 

Since 8 and 9 were bound by MINP(3) similarly, the interference from 8 should derive from 

its spectroscopic instead of binding properties. We also examined the interference of two 

additional analogues of 3, with the methyl ester hydrolyzed (in 11) and replaced with a 

longer, hexyl group (in 12), respectively. As shown by Fig. 24 and 25, these analogues did 

not affect the FRET signal at all, despite their similarity to 3.    
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Figure 3. (a) Excitation spectra of MINP(3) with 2 μM of compound 3, titrated with 0–12 

μM of compound 2. (b) Excitation spectra of MINP(3) with 2 μM of compound 3, titrated 

with 0–12 μM of compound 8. The dotted spectrum in black was obtained by subtracting the 

MINP spectrum from that of the MINP plus compound 3. The emission for the dansyl 

acceptor at 520 nm (λem) was monitored as the excitation wavelength (λex) was scanned from 

250 to 450 nm. [MINP] =0.50 μM in 50 mM Tris buffer (pH = 7.4).  

 

Conclusion 

In summary, we have demonstrated that fluorescently-labelled MINPs can be 

generated against hydrophobic guests for highly specific binding among their structural 

analogues. The combination of predetermined binding properties from molecular imprinting 

and easy-to-perform FRET-based detection make these MINPs potentially very useful as 

sensors for small fluorescent molecules in water. Since the fluorophore was introduced 

independently from the molecular recognition-aspect of the imprinting, the FRET-detection 

and molecular imprinting in principle are orthogonal to each other. 
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Experimental Section 

General Method 

Methanol, methylene chloride, and ethyl acetate were of HPLC grade and were 

purchased from Fisher Scientific. All other reagents and solvents were of ACS-certified 

grade or higher, and were used as received from commercial suppliers. Routine 
1
H and 

13
C 

NMR spectra were recorded on a Bruker DRX-400 or on a Varian VXR-400 spectrometer. 

ESI-MS mass was recorded on Shimadzu LCMS-2010 mass spectrometer. Dynamic light 

scattering (DLS) was performed on a PD2000DLS+ dynamic light scattering detector. 

Fluorescence spectra were recorded at ambient temperature on a Varian Cary Eclipse 

Fluorescence spectrophotometer.  Isothermal titration calorimetry (ITC) was performed using 

a MicroCal VP-ITC Microcalorimeter with Origin 7 software and VPViewer2000 (GE 

Healthcare, Northampton, MA). 

 

Syntheses 

Compounds 1,
16

 5,
17

 6,
18

 9,
19

 10,
20

 13,
21

  and 14
22

 were previously reported.  

 

Scheme 3. Synthesis of compound 11 
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Scheme 4. Synthesis of compound 4 

 

 

Scheme 5. Synthesis of compound 12 

 

Compound 3. To a solution of 9 (0.18 g, 0.66 mmol), copper sulfate hydrate (0.13 g, 0.66 

mmol), and sodium ascorbate (0.33 g, 1.32 mmol) in a 2:1:1 THF/H2O/CH3OH mixture (20 

mL), 13 (0.18 g, 0.80 mmol) in THF (1 mL) was added dropwise. After being stirred at 40 °C 

for 12 h, the reaction mixture was concentrated. The residue was diluted with THF (10 mL). 

The solid was filtered off and the filtrate was concentrated in vacuo. The residue was then 

purified by column chromatography over silica gel using 1:3 methanol/methylene chloride as 

the eluent to give an off-white powder (0.25 g, 64%). 
1
H NMR (400 MHz, CD3OD, δ): 9.16 

(d, J ꞊ 8.4 Hz, 1H), 8.51 (s,  1H), 8.51 (d, J ꞊ 8.0 Hz, 1H), 8.28(d, J ꞊ 6.8 Hz, 1H), 7.80 - 7.51 

(m, 4H), 7.29 (d, J ꞊ 8.4 Hz, 1H), 7.13(d, J ꞊ 8.4 Hz, 1H), 5.45( s, 2H), 3.90 (s, 6H).  
13

C 

NMR (100 MHz, CDCl3/CD3OD ꞊ 1:1, δ): 167.7, 152.2, 149.7, 133.9, 130.4, 129.9, 129.8, 

127.4, 127.3, 126.8, 126.2, 125.5, 124.5, 123.9, 123.9, 123.8, 113.5, 112.9, 62.8, 56.1, 52.3.  

ESI-HRMS (m/z): [M-Na]
 -
 calcd for C22H18N3O7S, 468.0860; found, 468.0865. 
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Compound 4. The compound was synthesized according to a modified literature 

procedure.
23 

 Compound 14 (110.0 mg, 0.38 mmol) and triethylamine (TEA, 56.7 mg, 0.56 

mmol) were dissolved in dichloromethane (20 mL) and cooled on an ice bath. Methacryloyl 

chloride (58.8 mg, 0.56 mmol) in dichloromethane (5 mL) was added dropwise to the stirred 

solution. The ice bath was removed and the reaction mixture was stirred at room temperature 

for 3 h. The solution was carefully acidified with 1M hydrochloric acid to pH 4 and washed 

with water (3 × 20 mL). The organic solvent was dried over Na2SO4 and concentrated in 

vacuo. The residue was purified by column chromatography over silica gel using 1:20 

methanol/methylene chloride as the eluent to give a yellow powder (102 mg, 63%). 
1
H NMR 

(400 MHz, DMSO-d6, δ): 8.56 (d, J ꞊ 8.4 Hz, 1H), 8.27 (d, J ꞊ 7.2 Hz, 1H), 8.16 (d, J ꞊ 7.2 

Hz, 1H), 7.81 (d, J ꞊ 7.2 Hz, 1H), 7.70 ‒7.67 (m, 2H) , 7.28 (d, J ꞊ 5.6 Hz, 1H), 5.76 (s, 1H), 

5.35 (d, J ꞊ 9.2 Hz, 2H), 5.19 (s, 1H), 4.03 (t, J ꞊ 6.4 Hz, 2H), 3.40 (t, J ꞊ 6.4 Hz, 2H), 2.83 (s, 

6H), 1.86 (s, 3H), 1.63 (s, 3H). 
13

C NMR (100 MHz, CDCl3, δ): 172.3, 168.5, 139.5, 139.3, 

132.8, 132.8, 131.9, 129.7, 129.5, 128.8, 123.1, 121.1, 120.5, 120.5, 117.8, 115.4, 46.2, 45.4, 

39.5, 29.7, 19.1, 18.5. ESI-HRMS (m/z): [M + H] 
+
 calcd for C22H28N3O4S, 430.1795; found, 

430.1803. 

Compound 16. To compound 15 (0.20 g, 0.97 mmol) in anhydrous DMF (30 mL), 

potassium carbonate (0.34 g, 2.43 mmol) and 1-bromohexane (0.24 mg, 1.46 mmol) were 

added. After being stirred at 80 ˚C for 16 h, the reaction mixture was cooled to room 

temperature and the solid was removed by vacuum filtration. The DMF solution was 

combined with water (50 mL) and the resulting solution was extracted with ethyl acetate (3 × 

15 mL). The combined organic layers were dried over sodium sulfate and concentrated in 

vacuo. The residue was purified by column chromatography over silica gel using 1:6 ethyl 
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acetate/hexane as the eluent to afford a colorless oil (0.23 g, 82%). 
1
H NMR (400 MHz, 

CDCl3), δ: 7.68 (m, 1H), 7.56 (s, 1H), 7.05 (d, J ꞊ 8.4 Hz, 1H), 4.82 (s, 2H), 4.30 (t, J ꞊ 6.8 

Hz, 2H), 3.90 (s, 3H),  2.53 (s, 1H), 1.77 (m, 2H), 1.34‒1.31 (m, 6H), 0.91 (t, J ꞊ 6.8 Hz, 

3H). 
13

C NMR (100 MHz, CDCl3, δ): 166.3, 150.5, 149.1, 124.2, 123.0, 123.0, 112.5, 77.8, 

76.3, 65.1, 56.5, 56.0, 31.5, 28.7, 25.7, 22.5, 14.0. ESI-HRMS (m/z): [M + H] 
+
 calcd for 

C17H23O4, 291.1596; found, 291.1598. 

Compound 12. To a solution of 9 (90 mg, 0.33 mmol), copper sulfate hydrate (66 mg, 0.33 

mmol), and sodium ascorbate (165 mg, 0.66 mmol) in a 2:1:1 THF/H2O/CH3OH mixture (20 

mL), 16 (116 mg, 0.4 mmol) in THF (1 mL) was added dropwise. After being stirred at 40 

°C for 24 h, the reaction mixture was concentrated. The residue was diluted with THF (10 

mL). The solid was filtered off and the filtrate was concentrated in vacuo. The residue was 

then purified by column chromatography over silica gel using 1:3 methanol/methylene 

chloride as the eluent to give an off-white powder (146 mg, 75%). 
1
H NMR (400 MHz, 

CD3OD /DMSO-d6), δ: 8.04 (s, 1H), 7.65 (m, 2H), 7.63 (m, 2H), 7.13 (d, J ꞊ 8.4 Hz, 2H), 

6.92 (s, 1H), 6.85 (t, J ꞊ 8.4 Hz, 1H), 6.60 (s, 1H), 4.83 (s, 2H), 4.30 (t, J ꞊ 8.4 Hz, 1H), 3.90 

(s, 3H), 1.77 (m, 2H), 1.34‒1.31 (m, 6H), 0.91 (t, J ꞊ 6.8 Hz, 3H). 
13

C NMR (100 MHz, 

CDCl3, δ): 166.3, 150.5, 149.9, 149.1, 146.1, 124.2, 124.0, 123.0, 123.0, 123.0, 123.0, 114.0, 

112.5, 112.5, 112.5, 112.4, 112.4, 112.4, 111.7, 65.1, 56.5, 56.0, 31.5, 28.7, 25.7, 22.5, 14.0. 

ESI-HRMS (m/z): [M-Na]
 -
 calcd for C27H28 N3O7 S, 538.1653; found, 538.1648. 

MINP(2). To a micellar solution of 1 (9.3 mg, 0.02 mmol) in D2O (2.0 mL), divinylbenzene 

(DVB, 2.8 μL, 0.02 mmol), 2 in D2O (10 μL of 7.8 mg/mL, 0.0004 mmol), 4 in dimethyl 

sulfoxide (DMSO, 10 μL 34.4 mg/mL, 0.0008 mmol), and 2,2-dimethoxy-2-

phenylacetophenone (DMPA,10 μL of a 12.8 mg/mL solution in DMSO, 0.0005 mmol) were 
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added. The mixture was subjected to ultrasonication for 10 min before compound 5 (4.1 mg, 

0.024 mmol), CuCl2 (10 μL of a 6.7 mg/mL solution in D2O, 0.0005 mmol), and sodium 

ascorbate (10 μL of a 99 mg/mL solution in D2O, 0.005 mmol) were added. After the 

reaction mixture was stirred slowly at room temperature for 12 h, compound 6 (10.6 mg, 0.04 

mmol), CuCl2 (10 μL of a 6.7 mg/mL solution in D2O, 0.0005 mmol), and sodium ascorbate 

(10 μL of a 99 mg/mL solution in D2O, 0.005 mmol) were added. After being stirred for 

another 6 h at room temperature, the reaction mixture was transferred to a glass vial, purged 

with nitrogen for 15 min, sealed with a rubber stopper, and irradiated in a Rayonet reactor for 

12 h. 
1
H NMR spectroscopy was used to monitor the progress of reaction. The reaction 

mixture was poured into acetone (8 mL). The precipitate was collected by centrifugation and 

washed with a mixture of acetone/water (5 mL/1 mL) three times. The crude produce was 

washed by methanol/acetic acid (5 mL/0.1 mL) three times until no fluorescence could be 

observed in the residual wash, and then with excess acetone. The off white powder was dried 

in air to afford the final MINPs (17 mg, 85%).  

MINP(3). To a micellar solution of 1 (9.3 mg, 0.02 mmol) in D2O (2.0 mL), divinylbenzene 

(DVB, 2.8 μL, 0.02 mmol), 3 in D2O (10 μL of 18 mg/mL in D2O, 0.0004 mmol), 4 in 

dimethyl sulfoxide (DMSO, 10 μL 34.4 mg/mL, 0.0008 mmol), and 2,2-dimethoxy-2-

phenylacetophenone (DMPA,10 μL of a 12.8 mg/mL solution in DMSO, 0.0005 mmol) were 

added. The mixture was subjected to ultrasonication for 10 min before compound 5 (4.1 mg, 

0.024 mmol), CuCl2 (10 μL of a 6.7 mg/mL solution in D2O, 0.0005 mmol), and sodium 

ascorbate (10 μL of a 99 mg/mL solution in D2O, 0.005 mmol) were added. After the 

reaction mixture was stirred slowly at room temperature for 12 h, compound 6 (10.6 mg, 0.04 

mmol), CuCl2 (10 μL of a 6.7 mg/mL solution in D2O, 0.0005 mmol), and sodium ascorbate 
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(10 μL of a 99 mg/mL solution in D2O, 0.005 mmol) were added. After being stirred for 

another 6 h at room temperature, the reaction mixture was transferred to a glass vial, purged 

with nitrogen for 15 min, sealed with a rubber stopper, and irradiated in a Rayonet reactor for 

12 h. 
1
H NMR spectroscopy was used to monitor the progress of reaction. The reaction 

mixture was poured into acetone (8 mL). The precipitate was collected by centrifugation and 

washed with a mixture of acetone/water (5 mL/1 mL) three times. The crude produce was 

washed by methanol/acetic acid (5 mL/0.1 mL) three times until no fluorescence could be 

observed in the residual wash, and then with excess acetone. The off white powder was dried 

in air to afford the final MINPs (17 mg, 85%).  
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Figure 4. 
1
H NMR spectra of 1 in CDCl3 (black), alkynyl-SCM in D2O (red), and fluoro-

MINP(2) (blue) in D2O 
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Figure 5. 
1
H NMR spectra of 1 in CDCl3 (black), alkynyl-SCM in D2O (red), and fluoro-

MINP(3) (blue) in D2O 
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Figure 6. Distribution of the hydrodynamic diameters of the nanoparticles in water as 

determined by DLS for (a) alkynyl-SCM, (b) surface-functionalized SCM and (c) MINP(2) 

after purification. 
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Figure 7. Distribution of the molecular weights of fluoro-MINP(2) and the correlation curves 

for DLS. The PRECISION DECONVOLVE program assumes the intensity of scattering is 

proportional to the mass of the particle squared. If each unit of building block for the fluoro-

MINP(2) is assumed to contain one molecule of compound 1 (MW = 465 g/mol), 0.04 

molecules of compound 4 (MW = 430 g/mol), 1.2 molecules of compound 5 (MW = 172 

g/mol), one molecule of DVB (MW = 130 g/mol), and 0.8 molecules of compound 6 (MW = 

264 g/mol), the molecular weight of fluoro-MINP(3) translates to 50 [= 

51000/(465+0.04×430+1.2×172+130+0.8×264)] of such units.  
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Figure 8. Distribution of the hydrodynamic diameters of the nanoparticles in water as 

determined by DLS for (a) alkynyl-SCM, (b) surface-functionalized SCM and (c) MINP(3) 

after purification. 
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Figure 9. Distribution of the molecular weights of fluoro-MINP(3) and the correlation curves 

for DLS. The PRECISION DECONVOLVE program assumes the intensity of scattering is 

proportional to the mass of the particle squared. If each unit of building block for the fluoro-

MINP(3) is assumed to contain one molecule of compound 1 (MW = 465 g/mol), 0.04 

molecules of compound 4 (MW = 430 g/mol), 1.2 molecules of compound 5 (MW = 172 

g/mol), one molecule of DVB (MW = 130 g/mol), and 0.8 molecules of compound 6 (MW = 

264 g/mol), the molecular weight of fluoro-MINP(3) translates to 47 [= 

48900/(465+0.04×430+1.2×172+130+0.8×264)] of such units.  

 

Figure 10. Normalized excitation spectra of Fluoro-MINP(2) in the presence of different 

concentrations of 3. The emission for the dansyl acceptor at 500 nm (λem) was monitored as 

the excitation wavelength (λex) was scanned from 250 to 450 nm was scanned. [MINP] = 

0.25 μM in 50 mM Tris buffer (pH 7.4). 
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Figure 11. Normalized excitation spectra of Fluoro-MINP(3) in the presence of different 

concentrations of 2. The emission for the dansyl acceptor at 500 nm (λem) was monitored as 

the excitation wavelength (λex) was scanned from 250 to 450 nm was scanned. [MINP] = 

0.25 μM in 50 mM Tris buffer (pH 7.4). Weak FRET was observed. 

 

Figure 12. Normalized excitation spectra of Fluoro-MINP(2) in the presence of different 

concentrations of 7. The emission for the dansyl acceptor at 500 nm (λem) was monitored as 

the excitation wavelength (λex) was scanned from 250 to 450 nm was scanned. [MINP] = 

0.25 μM in 50 mM Tris buffer (pH 7.4). 
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Figure 13. Normalized excitation spectra of Fluoro-MINP(2) in the presence of different 

concentrations of 8. The emission for the dansyl acceptor at 500 nm (λem) was monitored as 

the excitation wavelength (λex) was scanned from 250 to 450 nm was scanned. [MINP] = 

0.25 μM in 50 mM Tris buffer (pH 7.4). The emission had a gradual shift to the red upon 

titration with 8. The intensity near 300–310 nm decreased rather than increased as in the 

case of FRET. 

 

Figure 14. Normalized excitation spectra of Fluoro-MINP(2) in the presence of different 

concentrations of 9. The emission for the dansyl acceptor at 500 nm (λem) was monitored as 

the excitation wavelength (λex) was scanned from 250 to 450 nm was scanned. [MINP] = 

0.25 μM in 50 mM Tris buffer (pH 7.4). Weak FRET was observed. 
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Figure 15. Normalized excitation spectra of Fluoro-MINP(2) in the presence of different 

concentrations of 10. The emission for the dansyl acceptor at 500 nm (λem) was monitored as 

the excitation wavelength (λex) was scanned from 250 to 450 nm was scanned. [MINP] = 

0.25 μM in 50 mM Tris buffer (pH 7.4). Compound 10 had the same dansyl as the acceptors 

on the MINP and thus the excitation spectrum toward higher concentration of 10 mainly was 

from compound 10 itself. 

 

 

Figure 16. Normalized excitation spectra of Fluoro-MINP(3) in the presence of different 

concentrations of 7. The emission for the dansyl acceptor at 500 nm (λem) was monitored as 

the excitation wavelength (λex) was scanned from 250 to 450 nm was scanned. [MINP] = 

0.25 μM in 50 mM Tris buffer (pH 7.4). 
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Figure 17. Normalized excitation spectra of Fluoro-MINP(3) in the presence of different 

concentrations of 8. The emission for the dansyl acceptor at 500 nm (λem) was monitored as 

the excitation wavelength (λex) was scanned from 250 to 450 nm was scanned. [MINP] = 

0.25 μM in 50 mM Tris buffer (pH 7.4). 

 

 

Figure 18. Normalized excitation spectra of Fluoro-MINP(3) in the presence of different 

concentrations of 9. The emission for the dansyl acceptor at 500 nm (λem) was monitored as 

the excitation wavelength (λex) was scanned from 250 to 450 nm was scanned. [MINP] = 

0.25 μM in 50 mM Tris buffer (pH 7.4). Very weak FRET was observed. 
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Figure 19. Normalized excitation spectra of Fluoro-MINP(3) in the presence of different 

concentrations of 10. The emission for the dansyl acceptor at 500 nm (λem) was monitored as 

the excitation wavelength (λex) was scanned from 250 to 450 nm was scanned. [MINP] = 

0.25 μM in 50 mM Tris buffer (pH 7.4). The emission had a gradual shift to the blue upon 

titration with 10. Compound 10 had the same dansyl as the acceptors on the MINP and thus 

the excitation spectrum toward higher concentration of 10 mainly was from compound 10 

itself. 
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(a) (b) (c)

(d) (e)

 

Figure 20. ITC titration curves obtained at 298 K for the titration of fluoro-MINP(2) with 3 

(a), 7 (b), 8 (c), 9 (d), and 10 (e) in 50 mM Tris buffer (pH 7.4). The data correspond to entries 

2‒6, respectively, in Table 1. The top panel shows the raw calorimetric data. The area under 

each peak represents the amount of heat generated at each ejection and is plotted against the 

molar ratio of MINP to the substrate. The solid line is the best fit of the experimental data to 

the sequential binding of N equal and independent binding sites on the MINP. The heat of 

dilution for the substrate, obtained by adding the substrate to the buffer, was subtracted from 

the heat released during the binding. Binding parameters were auto-generated after curve 

fitting using Microcal Origin 7. 



www.manaraa.com

61 

 

 

(a) (b) (c)

 

(d) (e)

 

Figure 21. ITC titration curves obtained at 298 K for the titration of fluoro-MINP(3) with 2 

(a), 7 (b), 8 (c), 9 (d), and 10 (e) in 50 mM Tris buffer (pH 7.4). The data correspond to entries 

7 and 9‒12, respectively, in Table 1. The top panel shows the raw calorimetric data. The area 

under each peak represents the amount of heat generated at each ejection and is plotted against 

the molar ratio of MINP to the substrate. The solid line is the best fit of the experimental data 

to the sequential binding of N equal and independent binding sites on the MINP. The heat of 

dilution for the substrate, obtained by adding the substrate to the buffer, was subtracted from 

the heat released during the binding. Binding parameters were auto-generated after curve 

fitting using Microcal’s Origin 7 software. 
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Figure 22. Excitation spectra of MINP(3) with 2 μM of compound 3, titrated with 0–12 μM of 

compound 7. The dotted spectrum in black was obtained by subtracting the MINP spectrum 

from that of the MINP plus compound 3. The emission for the dansyl acceptor at 520 nm (λem) 

was monitored as the excitation wavelength (λex) was scanned from 250 to 450 nm was 

scanned. [MINP] = 0.50 μM in 50 mM Tris buffer (pH 7.4). 

 

Figure 23. Excitation spectra of MINP(3) with 2 μM of compound 3, titrated with 0–12 μM of 

compound 9. The dotted spectrum in black was obtained by subtracting the MINP spectrum 

from that of the MINP plus compound 3. The emission for the dansyl acceptor at 520 nm (λem) 

was monitored as the excitation wavelength (λex) was scanned from 250 to 450 nm was 

scanned. [MINP] = 0.50 μM in 50 mM Tris buffer (pH 7.4). 
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Figure 24. Excitation spectra of MINP(3) with 2 μM of compound 3, titrated with 0–12 μM of 

compound 11. The dotted spectrum in black was obtained by subtracting the MINP spectrum 

from that of the MINP plus compound 3. The emission for the dansyl acceptor at 520 nm (λem) 

was monitored as the excitation wavelength (λex) was scanned from 250 to 450 nm was 

scanned. [MINP] = 0.50 μM in 50 mM Tris buffer (pH 7.4). 

 

Figure 25. Excitation spectra of MINP(3) with 2 μM of compound 3, titrated with 0–12 μM of 

compound 12. The dotted spectrum in black was obtained by subtracting the MINP spectrum 

from that of the MINP plus compound 3. The emission for the dansyl acceptor at 520 nm (λem) 

was monitored as the excitation wavelength (λex) was scanned from 250 to 450 nm was 

scanned. [MINP] = 0.50 μM in 50 mM Tris buffer (pH 7.4). 
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CHAPTER 4 

WATER-SOLUBLE MOLECULARLY IMPRINTED NANOPARTICLES (MINPs) WITH 

TAILORED, FUNCTIONALIZED, MODIFIABLE BINDING POCKETS 

 

A paper published in Chemistry - A European Journal, 2015, 21, 655-661 

Joseph K. Awino and Yan Zhao 

 

Abstract 

Construction of receptors with binding sites of specific size, shape, and functional 

groups is important to both chemistry and biology. Covalent imprinting of a photocleavable 

template within surface–core-doubly cross-linked micelles yielded carboxylic acid-

containing hydrophobic pockets within the water-soluble molecularly imprinted 

nanoparticles. The functionalized binding pockets were characterized by their binding of 

amine- and acid-functionalized guests under different pHs. The nanoparticles on average 

contained one binding site per particle and displayed highly selective binding among 

structural analogues. The binding sites could be modified further by covalent chemistry to 

modulate their binding properties.  

  

Scheme 1. General design 



www.manaraa.com

73 

 

Introduction 

The active (binding, transport, or catalytic) sites of proteins are key to their intended 

functions. Supramolecular chemists over the last decades have synthesized a great many 

synthetic receptors to mimic one or more aspects of these active sites, with the majority of 

them prepared through molecular synthesis.
1
 Although molecular synthesis ensures 

synthetically pure and discrete functional molecules, the significant synthetic efforts required 

often become impediments to scale-up and practical applications of the materials. 

Molecular imprinting is a conceptually different approach to synthetic receptors.
 2

 

Instead of building the receptors first and then trying to fit their guests into the structures, one 

simply co-polymerizes appropriate functional monomers (FMs) and cross-linkers around 

molecular templates. Removal of the templates generates guest-complementary binding 

pockets within the polymer matrix. Much progress has been made in molecularly imprinted 

polymers (MIPs) since Wulff 
3
 and Mosbach 

4
 respectively pioneered the covalent and 

noncovalent imprinting (referring to the binding interactions between FMs and the template). 

The concept has also been extended beyond traditional macroporous polymers to imprinted 

surface
[2]

 and even unimolecularly within dendrimers. 
5
 

Although molecular imprinting can create binding sites more efficiently than 

molecular synthesis, it is generally accepted that the binding sites obtained through 

imprinting are heterogeneous and less structurally defined.
 2, 6

 According to a representative 

review, 
7
 MIPs ideally are “preparable in one (or few) high yielding synthetic step(s)”, “able 

to be post-synthetically functionalized,” and possess “homogeneous imprinted sites of high 

stability” with “high (binding) affinity with possibility to tune.” Although highly desirable 
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and important to many applications of MIPs, many of these features are yet to be realized 

with traditional imprinting techniques. 

Herein, we report a method to construct tailor-made, hydrophobic binding pockets 

possessing specific binding functional groups in water-soluble nanoparticles. These 

molecularly-imprinted nanoparticles (MINPs) were shown to distinguish guests based on 

their size, shape, and functional groups. Most interestingly, the binding pockets could be 

modified through standard chemistry to alter their molecular-recognition properties.
8
 

Different from traditional MIPs 
2
 or other reported imprinted nanoparticles,

 9 
our MINPs on 

average contained one binding pocket per particle, thus bridging the gap between the discrete 

receptors made through molecular synthesis and those less well-defined receptors made 

through traditional imprinting. 

 

Results and Discussion 

Materials Design and Synthesis 

The method was a development from on our recently reported molecular imprinting 

using surface-cross-linked micelles (SCMs)
 10

 prepared from 1 (Scheme 2).
 11

 This surfactant 

has a tripropargylammonium headgroup cross-linkable on the surface by the click reaction. 

Its methacrylate at the hydrophobic tail enables core-cross-linking around a hydrophobic 

template solubilized by the micelle in water. In the previous work, we demonstrated that 

selective binding pockets could be created within the SCM for bile salts. The limitation of the 

previous method lies in the fact that only hydrophobic pockets with prescribed shapes could 

be created within the MINPs. Without specific binding groups, the pockets recognize guests 

primarily based on their size and/or shape.  
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To install a functional group within a molecularly imprinted binding pocket, one 

normally has to employ FMs that bind the template through specific noncovalent 

interactions. Although such a method works well for conventional MIPs in organic media, it 

is completely unsuitable in our case because the entire imprinting takes place in aqueous 

solution. Not only do FMs with polar binding groups (e.g., methacrylic acid) tend to stay in 

water instead of within hydrophobic core of the micelle, the intended noncovalent template–

FM complex is also unlikely to be stable when a large amount of water is present that 

competes in hydrogen-bonding.
 12

 Even if the template–FM complex is somehow made stable 

inside the micelle, the polar FM most likely would stay at the surfactant/water interface 

instead of in the hydrophobic core of the micelle. As a result, even if such imprinting is made 

to work, it will be difficult to have the polar functional group deep within the hydrophobic 

core of the resulting MINP. Needless to say, for molecular recognition in water, polar 

binding interactions typically are stronger in a more deeply imbedded hydrophobic 

microenvironment. 

 

 

            Scheme 2. Preparation of MINP-COOH 
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To overcome these challenging problems, we designed a photocleavable template (2) 

containing an o-nitrobenzyl linkage (Scheme 2). Its overall hydrophobicity allowed it to be 

easily incorporated into the micelle of 1. The sulfonate group of the template had strategic 

purposes in our design: in addition to strengthening the binding with the cationic micelle of 1 

through electrostatic interactions, it orients the template to make its methacrylate point 

inward. Because the methacrylate is nearly at the opposite end of molecule from the sulfate 

that is anchored at the micelle surface, the methacrylate (after polymerization and photo-

deprotection) is expected to position the carboxylic acid deep inside the hydrophobic pocket 

of the final MINP-COOH (Scheme 2).  

MINP-COOH synthesis was adapted from our earlier procedures.
 11a

 Click-cross-

linking of the template-containing micelles by the water-soluble diazide 3 in the presence of 

Cu(I) catalysts created alkynyl-SCMs, which were surface-functionalized through another 

round of click reaction with sugar-derived 4. The reactions were perfomed at 10 mM of 1 in 

water, above its CMC of 0.55 mM. Each SCM, according to our DLS study, contained ca. 50 

surfactants. Thus, a ratio of [1]:[2] = 1:0.02 in theory placed one template within each SCM, 

a feature verified in our previous bile salt-binding MINPs.
 11a

 

   In the previous procedure, we employed photo-polymerization to cross-link the 

methacrylate of 1 with DVB solubilized in the core. The method was clearly unsuitable with 

2 having the photocleavable o-nitrobenzyl ether. We thus decided to solubilize a small 

amount of AIBN (i.e azobisisobutyronitrile, a thermal initiator) at the beginning of the 

procedure and carried out thermal polymerization of the methacrylate and DVB at 75 °C for 

16 h after the “surface-clicking”. Fortunately, since hydrophobic interactions generally 

remain effective at high temperatures (and generally change from entropically driven to 
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enthalpically driven with increasing temperatures),
 13

 template 2 was successfully cross-

linked with the rest of the structure. Alkenic protons disappeared completely at the end of the 

thermal polymerization as shown by 
1
H NMR spectroscopy (Figure 6, Experiemental 

Section). 

Our last step in the materials synthesis was the photolytic cleavage of the o-

nitrobenzyl linkage to remove nitroso derivative 5 and vacate the binding site. The reaction 

progress could be monitored easily by fluorescence spectroscopy (Figure7) because of the 

fluorescent naphthalene group of 5 (and 2).
 14

  

According to DLS, the SCM, surface-functionalized SCM, and the final MINP-

COOH averaged 3.5, 6.3, and 4.7 nm in diameter (Figure 8). The size of MINP-COOH 

translated to ca. 50,000 daltons in molecular weight (Figure 9), comparable to many proteins 

in this regard. Overall, the MINP-COOH bears much resemblance to a water-soluble protein 

receptor with a hydrophilic exterior, a hydrophobic core, a specifically shaped hydrophobic 

binding site, and an internal functional group. It is worth mentioning that the sugar-derived 

surface ligand 4 was installed not just to make the MINP mimic a water-soluble protein in the 

surface hydrophilicity; its high crystallinity allowed the MINPs to be easily precipitated from 

solvents such as acetone while maintaining complete solubility in water and polar solvents 

such as DMF. As will be shown later, solubility in selected organic solvents was highly 

beneficial in covalent modification of the MINPs. 

 

Characterization of the Carboxylic Acid-Containing Binding Pockets 

 To characterize the carboxyl-functionalized MINP receptors, we first studied the 

binding of a template analogue 6, which contained an amino group where methacrylate was 
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in template 2. Since the carboxyl group in the MINP binding pocket was generated from the 

polymerized methacrylate of 2, compound 6 upon binding should have its amino group in 

close proximity to the MINP carboxyl. The host–guest binding thus should be driven by a 

combination of hydrophobic interactions (between the hydrophobic portion of 6 and the 

MINP) and an ammonium–carboxylate salt bridge. Being located in a hydrophobic 

microenvironment, the salt bridge should be particularly strong. 
15

 As in our bile salt-binding 

MINPs, electrostatic interactions between the positively charged cross-linked micelle and the 

sulfonate group should contribute as well. 

 

The water-solubility of our MINPs allowed us to study their binding properties using 

standard titration methods.
 1c

 As shown by Figure 1a, upon titration of 6 by MINP-COOH in 

Tris buffer at pH 7.4, its emission at 410 nm decreased and a weaker peak at 470 nm 

appeared gradually. Although we could not be certain why the MINP-bound 6 emitted at a 

longer wavelength, it is possible that the binding slowed down the rotation around the σ-bond 

between the triazole and the naphthyl ring and enhanced the conjugation between the two 

aromatic groups. For the same reason, although environmentally sensitive dansyl 

fluorophores are often used to probe the local polarity of the binding pocket, we could not do 

so with 6, as its emission depends on multiple factors. Nonetheless, the fluorescence data fit 

nicely to a 1:1 binding isotherm to afford a binding constant of Ka = (1.5 ± 0.3) × 10
6
 M

-1
 

(Figure 1b). 
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Figure 1. (a) Emission spectra of 6 (λex = 300 nm) upon addition of different concentrations 

of MINP-COOH in 50 mM Tris buffer (pH 7.4). [6] = 0.5 μM. (b) Nonlinear least squares 

fitting of the emission intensity of 6 at 415 nm to a 1:1 binding isotherm. 

To further understand the role of the MINP carboxyl in the binding, we performed 

similar fluorescence titrations of amine 6 at different pHs (2.2–9.5) in citrate–phosphate and 

Tris buffers. The concentration (10–50 mM) of the buffers showed negligible effect on the 

obtained binding constants. Such results generally suggest that ionic strength did not play any 

significant roles in the binding.
 16

 In the bile salt-binding MINPs, the negligible effect of 

ionic strength seemed to come from two opposing effects of salts on the hydrophobic 

interactions and electrostatic forces involved in the binding, respectively.
 11a

 

Because both the host and the guests contain removable protons, we have to consider 

the acid/base properties of all the reactants in the binding.
 17

 Scheme 3 shows the acid–base 

equilibria involved and the binding of amine 6 by MINP-COOH. The acidity constant of 

(protonated) amine 6 (pKNH3) in solution is probably similar to that for 1-phentylethylamine 

(pKa = 9.4).
 18

 Assuming MINP-COOH deprotonates more easily than protonated 6, we 

anticipate that the strongest binding between MINP-COOH and 6 would occur in between 

pKMINP and pKNH3. Below pKMINP, the dominant forms of the reactants are MINP-COOH and 
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RNH3
+
 (i.e., protonated 6). These two species cannot form the ammonium–carboxylate salt 

bridge directly. Instead, MINP-COOH needs to undergo an unfavorable deprotonation (in the 

acidic medium) in order for the binding to occur. The binding thus would be compromised by 

the deprotonation of the MINP carboxyl. Above pKNH3, MINP-COO
-
 and RNH2 (i.e., 6 itself) 

will dominate on the other hand. In order to form the ammonium–carboxylate salt bridge, 6 

has to undergo an unfavorable protonation under the now basic condition and thus would also 

weaken the binding. 

 

Scheme 3. The acid–base equilibria and the binding of amine 6 by MINP-COOH. 
 
 

Our titration confirmed the predictions. As shown by Figure 2, the binding was 

undetectable by fluorescence spectroscopy at ≤pH 5, became stronger with increasing pH, 

and weakened again above pH 7.4. According to Scheme 2, the maximum Ka (= 1.5 × 10
6
 M

-

1
) should reflect the binding when MINP-COO

-
 and RNH3

+ 
predominate in the solution. If we 

take the midpoint between pH 5 (where the binding was still zero but began to rise) and pH 

7.4 (where the binding was the strongest) as pKMINP, the acidity constant of the MINP 

carboxyl is estimated to be ~6.2. This value is significantly higher than acetic acid (pKa = 

4.76) or benzoic acid (pKa = 4.20) in water. The larger pKa for MINP-COOH is very 

reasonable and strongly supports the location of the acidic group in a hydrophobic 

microenvironment. It is well known from protein chemistry that a carboxyl group located in a 

hydrophobic pocket is more difficult to deprotonate than in aqueous solution, as the resulting 

carboxylate could not be solvated properly in a hydrophobic microenvironment.
 19
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Figure 2. The apparent binding constants of MINP-COOH for 6 in citrate–phosphate buffer 

(pH 2.2–6.2) and Tris buffer (pH 7.4–9.5) obtained by fluorescence titration. 

The presence of the carboxylic acid in the hydrophobic binding pocket of MINP-

COOH was verified additionally by its binding of the carboxylic acid guest 7. Scheme 4 

shows the various acid–base equilibria involved in the binding. Because the carboxyl group 

of 7 is exposed to solvent, its pKa is expected to be similar to that of 3,4-dimethoxybenzoic 

acid (pKa = 4.43).
 20

 Since the binding between two carboxylic acids occurs through the 

hydrogen-bonded carboxylic acid dimer, both MINP-COOH and 7 need to be in the 

protonated form to achieve the strongest binding. 

 

 

Scheme 4. The acid–base equilibria and the binding of acid 7 by MINP-COOH. 

 

Indeed, as shown by Figure 3, the pH profile for the binding of 7 was nearly opposite 

to that of 6: the strongest binding occurred at low pHs (2.2–2.6) and showed a sharp decrease 
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as the solution became less acidic. The binding weakened significantly at pH 3 and became 

completely undetectable by fluorescence at ≥pH 6.2. If we take the midpoint between pH 2.6 

(where the binding was the maximum) and pH 6.2 (where the binding first became zero) as 

the acidity constant of 7, a value of 4.4 was obtained, exactly as predicted from the pKa of 

3,4-dimethoxybenzoic acid. 
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Figure 3. The apparent binding constants of MINP-COOH for 7 in citrate–phosphate 

buffer (pH 2.2–6.2) and Tris buffer (pH 7.4–9.5) obtained by fluorescence titration. 

Because the maximum binding constants for 6 and 7 were quite similar (1.5 and 1.3 × 

10
6
 M

-1
, respectively), it seems the ammonium–carboxylate salt bridge and the carboxylic 

acid dimer make similar contributions to the overall binding. This is a useful piece of 

information for molecular recognition in water. A recent work of ours shows that, although a 

(guanidinium–carboxylate) salt bridge could be strong, for molecular recognition in self-

assembled hydrophobic entities such as micelles or lipid bilayers, a carboxylic acid dimer 

could be more useful. This is because the uncharged nature of a carboxylic acid dimer makes 

it more easily migrate into a hydrophobic microenvironment.
 21

 Charged functional groups 

(e.g., ammonium, guanidinium, or carboxylate) often have a strong tendency to stay within or 

at least close to water to satisfy their solvation needs.
 22
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Binding Selectivity of MINP-COOH: An important property of molecularly imprinted 

materials is their binding selectivity. The above study demonstrated binding selectivity for 

acid- and base-functionalized template analogues in a pH-dependent manner. For example, at 

pH 7.4, the MINP receptor bound 6 with micromolar affinity but did not bind 7 at all. Under 

acidic conditions (pH 2.2–2.6), the exact opposite selectivity was achieved. 

To understand the binding selectivity of the MINP receptor for other non-acidic/basic 

analogues (8–11), we switched to isothermal titration calorimetry (ITC) to determine the 

binding constants. One reason for the change was that fluoresence titration was unsuitable for 

bindings with lower binding affinities. Additionally, ITC could easily afford other useful 

information including binding enthalpy, entropy, and the number of binding sites per particle 

(N). Because these guests do not contain acid/base groups, we performed ITC titrations under 

neutral conditions in 50 mM Tris buffer. 

 

ITC confirmed both the 1:1 binding stoichiometry and the binding affinity for 6 and 

yielded a Ka value very similar to that obtained by fluorescence titration (i.e., 1.5 × 10
6
 M

-1
, 

see Table 1, entry 1). The titration curve and the fitting of the experimental data are shown in 

Figure 4. ITC was able to detect the binding of 7 (which could not be obtained by 

fluorescence titration) at pH 7.4 and, as expected, gave a much weaker Ka, ca. 1/17 of that for 

6. Ketone 8 and ester 9 were bound similarly as expected (entries 3 and 4) and were bound 

more strongly than acid 7.
 23

 We were delighted to see the moderate selectivity for 6 over 8 or 

9. After all, these compounds were very similar guests in many regards. 
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Table 1. Binding data for MINP-COOH obtained by ITC
a 

Entry Guest 
Ka 

(10
4
 M

-1
) 

ΔG  

(kcal/mol) 

ΔH  

(kcal/mol) 

-TΔS 

(kcal/mol) 
N 

1 6 152 ± 6 -8.4 -70.2 61.8 1.0 ± 0.1 

2 7 8.8 ± 0.5 -6.7 -15.3 8.6 0.6 ± 0.1 

3 8 76 ± 3 -8.0 -29.8 21.8 0.7 ± 0.1 

4 9 73 ± 6 -8.0 -32.1 24.1 0.6 ± 0.1 

5 10 0.6 ± 0.5 -5.2 -7.2 2.0 0.4 ± 0.1 

6 11 5.2 ± 0.7 -6.4 -8.2 2.8 0.4 ± 0.1 

7 12 0.27 ± 0.06 -4.7 -3.5 -1.1 1.2 ± 0.1 

8 6
b
 3.1 ± 0.5 -6.1 -5.0 -1.1 0.6 ± 0.1 

9 12
b
 25 ± 2 -7.4 -9.6 2.2 0.7 ± 0.1 

a
 The titrations were generally performed in duplicates in 50 mM Tris buffer (pH 7.4) and the 

errors between the runs were <20% except in very weak bindings.  
b
 The host was MINP-

CONHNaph. 

 

 It is interesting to consider the ionic state of the carboxyl group on MINP-COOH 

during binding. The binding study for amine 6 yields a pKa of 6.2 for the MINP carboxyl. 

Upon “plugging” the binding pocket with a hydrophobic guest such as 8 or 9, the immediate 

environment around the MINP carboxyl becomes more hydrophobic upon the expulsion of 

water from the binding pocket. We would not be surprised that the binding should further 

increase its pKa so that the carboxyl stay “comfortably” protonated even when the bulk 

aqueous phase has a pH of 7.4. In other words, for an acidic (or basic) group relatively deep 

inside in a hydrophobic pocket in water, its acid or base property is not a fixed constant as in 

solution but is an intimate function of the guest present in the binding pocket. These 

properties apparently are critical to the binding and catalytic properties of proteins.
 19

  

Compound 10 is overall quite similar to 8 and 9 but misses a methoxy and a methyl 

ester or acetyl. It binding was two-orders-of-magnitude weaker, testifying to the excellent 

shape/size selectivity of the MINP (Table 1, entry 5). Ester 11 had a hexyl instead of methyl 

as in 8. Although its binding was stronger than that of 10, the one-order-of-magnitude 
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reduction in Ka from methyl ester 8 indicated that the binding pocket was quite 

discriminating. 

Table 1 shows that all the bindings studied by ITC were largely enthalpically driven, 

with generally unfavorable entropic terms. We do not believe the results imply that the 

contribution of hydrophobic interactions were insignificant. Although classical hydrophobic 

effect is considered entropically driven,
 24

 the effect is multifaceted and the energetic 

characteristics may be different depending on the (aliphatic/aromatic) nature of the guests 

and the size/shape of the hydrophobic surfaces.
 25

   

 

Figure 4. ITC titration curve obtained at 298 K for the binding of 6 in 50 mM Tris buffer 

(pH 7.4). 

Notably, MINP-COOH contained one binding pocket per nanoparticle, evident from 

the binding studies for those guests with strong bindings (in which the ITC curve fitting 

would be more reliable). This feature came directly from the surfactant aggregation number 

and the ratio of surfactant to template during the imprinting. As demonstrated in the bile salt-

binding MINPs, if needed, the binding stoichiometry could be tuned by the 

surfactant/template ratio quite easily.
 11a
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Covalent Modification of the Binding Pockets: Similar to an active site of a protein, the 

binding pocket of MINP-COOH could be modified through covalent chemistry. This could 

be a great way to tune the binding properties of the MINP receptor. To demonstrate this 

feature, we dissolved the nanoparticles in DMF and activated the MINP carboxyl with 1-

ethyl-3-(3-dimethylamino-propyl)carbodiimide hydrochloride or EDCI, a standard amide-

coupling reagent. After treatment with 2-aminonaphthalene, the resulting MINP-CONHNaph 

displayed characteristic naphthalene emission at 410 nm (Figure 10). 

 

Figure 5. Binding of amine 6 by MINP-COOH versus binding of dansyl sulfonate 12 by 

MINP-CONHNaph. 

Most interestingly, MINP-COOH and MINP-CONHNaph displayed (anticipated) 

highly different molecular-recognition properties. As described earlier, amine 6 was the best 

guest for MINP-COOH at pH 7.4, as everything including size, shape, and functional groups 

matched perfectly between the host and the guest. Not surprisingly, dansyl sulfate 12, which 

at most represented a “half-matched” guest, was too small to bind strongly to MINP-COOH 

(Table 1, entry 7, Ka = 0.27 × 10
4
 M

-1
 or 560 times weaker than that of 6). Once 

naphthylated, however, the binding pocket was expected to bind dansyl sulfonate much 

better, as the 2-aminonaphthalene group was chosen to make up for what was missing in 

dansyl sulfate 12 from 6 (i.e., the phenyl–triazole spacer between the amino and the naphthyl 

group, compare the two structures in Figure 5). As shown by the data in Table 1 (entries 8 
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and 9), MINP-CONHNaph showed a remarkable reversal of binding selectivity for 6 and 12: 

whereas the bigger guest was preferred by MINP-COOH by 560 times, the smaller guest was 

bound more strongly by the naphthylated receptor than the larger one by eight times.     

   

Conclusion 

Molecular imprinting in surfactant micelles is a powerful method to create 

nanoparticle receptors that resemble water-soluble proteins. Their hydrophilic exterior,
 10a, c, d, 

g
 hydrophobic core,

 26
 and internal tailor-made binding sites

11
 all could be tuned easily with 

the surface-cross-linked-micelle platform. The previous noncovalent imprinting in the 

micelles only yielded hydrophobic pockets with predefined shape and size.
 11

 By combining 

covalent imprinting with a photoprotection strategy, we now can install specific functional 

groups within the binding pockets. Despite the many protein-like features, the MINP 

receptors are highly cross-linked materials with robust properties and long-term stability. 

Importantly, the entire preparation and purification of MINPs could be done in 2–3 days 

without special techniques. With their excellent molecular-recognition properties and facile 

preparation, we anticipate MINPs to become very useful in many applications where custom-

made, specific binding sites are needed.  

 

Acknowledgement 

 

We thank NSF (CHE-1303764) for supporting the research. 

 



www.manaraa.com

88 

 

Experimental Section 

General Method 

Methanol, methylene chloride, and ethyl acetate were of HPLC grade and were 

purchased from Fisher Scientific. All other reagents and solvents were of ACS-certified 

grade or higher, and were used as received from commercial suppliers. Routine 1H and 13C 

NMR spectra were recorded on a Bruker DRX-400 or on a Varian VXR-400 spectrometer. 

ESI-MS mass was recorded on Shimadzu LCMS-2010 mass spectrometer. UV-vis spectra 

were recorded at ambient temperature on a Cary 100 Bio UV-visible spectrophotometer.  

Fluorescence spectra were recorded at ambient temperature on a Varian Cary Eclipse 

Fluorescence spectrophotometer. ITC was performed using a MicroCal VP-ITC 

Microcalorimeter with Origin 7 software and VPViewer2000 (GE Healthcare, Northampton, 

MA). Syntheses of the compounds are reported in the Supporting Information. 
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Syntheses 

Syntheses of compounds 1,
27 

3,
28

 4,
29

 7,
30

 11,
30

 12,
31

 13,
32 

14,
33

 15,
34

 16,
35

 17,
36

 18,
37

 

and 19,
38

 were previously reported.  

 

Scheme 5. Synthesis of compound 2 

 

 

 

Scheme 6. Synthesis of compound 6 
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Scheme 7. Synthesis of compound 8 

 

 

Scheme 8. Synthesis of compound 10 

 

Compound 2. To an ice-cold solution of 15 (1.00 g, 3.98 mmol) and DIPEA (1.10 mL, 5.95 

mmol) in anhydrous THF (20 mL), methacryloyl chloride (0.50 mL, 5.15 mmol) was added 

dropwise under nitrogen. The mixture was brought to room temperature and stirred 

overnight. The resulting solution was diluted with water and extracted with ethyl acetate (2 × 

10 mL). The organic solution was washed with 1 M HCl to pH 6.0 and then with water (2 × 

10 mL), dried over sodium sulfate, and concentrated in vacuo to give clear oil. The oil 

obtained (1.27 g) was added to 16 (1.00 g, 3.69 mmol) in a 2:1 THF/water mixture (20 mL). 

Sodium ascorbate (0.93 g, 4.70 mmol) and copper sulfate hydrate (1.00 g, 4.00 mmol) were 

added and the mixture was stirred at 40 °C in the dark for 12 h. The organic solvent was 

removed in vacuo and sodium chloride (10 g) was added to the aqueous solution. The 
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precipitate formed was rinsed with dichloromethane (10 mL) and then dissolved in 5:3 

dichloromethane/methanol. After removal of the solid by filtration, the filtrate was 

concentrated in vacuo and the residue was purified by column chromatography over silica gel 

using 5:1 methylene chloride: methanol as the eluent to afford an off-white powder (1.56 g, 

72 %). 
1
H NMR (400 MHz, CD3OD, δ): 9.13 (d, J ꞊ 8.4 Hz, 1H), 8.50 (s,  1H), 8.30 (d, J ꞊ 

7.2 Hz, 1H), 7.73 (m, 2H), 7.56 (m, 3H), 7.19 (s, 1H), 6.44 (d, J ꞊ 6.8 Hz, 1H), 6.20 (s, 1H), 

5.67 (m, 1H), 5.43 (s, 2H), 3.94 (s, 3H), 1.94 (d, J ꞊ 6.8 Hz, 3H), 1.68 (m, 3H).  
13

C NMR 

(100 MHz, CD3OD, δ): 170.3, 138.4, 128.5, 125.8, 125.8, 125.8, 123.0, 123.0, 123.0, 123.0, 

120.4, 120.4, 120.4, 120.4, 119.3, 119.3, 119.3, 112.8, 112.8, 112.8, 108.0, 80.0, 72.9, 55.2, 

28.9, 27.9. ESI-HRMS (m/z): [M-Na]
 -

  calcd for C26H23N4O9S, 567.1180; found, 567.1186 

Compound 9. To a solution of 16 (54.0 mg, 0.2 mmol), copper sulfate hydrate (50.0 mg, 0.2 

mmol), and sodium ascorbate (80.0 mg, 0.4 mmol) in a 2:1:1 THF/H2O/CH3OH mixture (20 

mL), 15 (82.0 mg, 0.4 mmol) in THF (1 mL) was added dropwise.  After being stirred at 40 

°C for 12 h, the reaction mixture was concentrated. The residue was diluted with THF (10 

mL). The solid was filtered off and the filtrate was concentrated in vacuo. The residue was 

then purified by column chromatography over silica gel using 1:3 methanol/methylene 

chloride as the eluent to give an off-white powder (63.7 mg, 67%). 
1
H NMR (400 MHz, 

CDCl3/CD3OD ꞊ 1:1, δ): 9.17 (d, J ꞊ 8.8 Hz, 1H), 8.52 (s,  1H), 8.30 (d, J ꞊ 6.8 Hz, 1H), 7.78 

‒7.71 (m, 2H), 7.60 ‒7.55 (m, 2H), 7.32 (d, J ꞊ 8.4 Hz, 1H), 7.16 (d, J ꞊ 8.4 Hz, 1H), 5.46 ( s, 

2H), 3.90 (s, 3H), 2.60 (s, 3H). 
13

C NMR (100 MHz, CD3OD, δ): 199.6, 153.1, 151.1, 140.2, 

134.4, 132.6, 129.0, 128.1, 127.8, 127.0, 125.6, 124.8, 124.6, 124.5, 124.5, 114.3, 114.3, 

112.2, 112.2, 77.7, 56.7, 26.6.  ESI-HRMS (m/z): [M-Na]
 -

 calcd for C22H18N3O6S, 452.0916; 

found, 452.0911. 
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Compound 6.  To a solution of 9 (0.15 g, 0.32 mmol) in anhydrous THF (10 mL), 

ammonium trifluoroacetate (0.21 g, 1.60 mmol) and sodium triacetoborohydrate (017 g, 0.80 

mmol) were added. After being stirred at room temperature for 72 h, the mixture was 

concentrated in vacuo and purified by column chromatography over silica gel using 1:10 

methanol/dichloromethane as the eluent to give the amine–trifluoroacetate salt as product.  

The amine–trifluoroacetate salt was dissolved in a saturated aqueous solution of sodium 

bicarbonate (~1.0 mL) to pH 6‒7 and sodium chloride (0.20 g) was added. The precipitate 

formed was transferred into a filtration funnel, rinsed with water (2 × 2 mL), and dried for 30 

min, rinsed again with  ethyl acetate (3 × 15  mL), and dried under vacuum to afford the 

product as a white powder (97 mg, 64 %). 
1
H NMR (400 MHz, D2O, δ): 8.56 (d, J ꞊ 8.8 Hz, 

1H), 8.29 (m,  2H), 7.77‒7.66 (m, 4H), 7.50 (d, J ꞊ 3.6 Hz, 1H), 7.25 (m, 1H), 7.04 (m, 1H), 

4.97(s, 2H), 3.97 (s, 4H), 2.66 (d, J ꞊ 2.4 Hz, 3H) . 
13

C NMR (100 MHz, CD3OD, δ): 154.1, 

151.4, 135.4, 132.7, 131.5, 131.4, 131.2, 128.3, 127.9, 127.2, 126.5, 125.8, 124.9, 124.9, 

124.7, 124.7, 114.5, 112.4, 77.9, 68.7, 56.8, 26.8. ESI-HRMS (m/z): [M-Na]
 -

 calcd for 

C24H22F3N4O7S, 567.1167; found, 567.1175. 

Compound 8. To a solution of 16 (0.18 g, 0.66 mmol), copper sulfate hydrate (0.13 g, 0.66 

mmol), and sodium ascorbate (0.33 g, 1.32 mmol) in a 2:1:1 THF/H2O/CH3OH mixture (20 

mL), 18 (0.18 g, 0.80 mmol) in THF (1 mL) was added dropwise. After being stirred at 40 °C 

for 12 h, the reaction mixture was concentrated. The residue was diluted with THF (10 mL). 

The solid was filtered off and the filtrate was concentrated in vacuo. The residue was then 

purified by column chromatography over silica gel using 1:3 methanol/methylene chloride as 

the eluent to give an off-white powder (0.25 g, 64%). 
1
H NMR (400 MHz, CD3OD, δ): 9.18 

(d, J ꞊ 8.4 Hz, 1H), 8.51 (s,  1H), 8.30(d, J ꞊ 6.8 Hz, 1H), 7.80 - 7.51 (m, 5H), 7.30 (d, J ꞊ 8.4 
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Hz, 1H), 7.15(m, 1H), 5.45( s, 2H), 3.90 (s, 6H).  
13

C NMR (100 MHz, CDCl3/CD3OD ꞊ 1:1, 

δ): 167.7, 152.2, 149.7, 133.9, 130.4, 129.9, 129.8, 127.4, 127.3, 126.8, 126.2, 125.5, 124.5, 

123.9, 123.9, 123.8, 113.5, 112.9, 62.8, 56.1, 52.3.  ESI-HRMS (m/z): [M-Na]
 -

 calcd for 

C22H18N3O7S, 468.0860; found, 468.0865. 

Compound 10. To a solution of 16 (0.18 g, 0.66 mmol), copper sulfate hydrate (0.13 g, 0.66 

mmol), and sodium ascorbate (0.33 g, 1.32 mmol) in a 2:1:1 THF/H2O/CH3OH mixture (20 

mL), 19 (0.11 g, 0.80 mmol) in THF (1 mL) was added dropwise. After being stirred at 40 °C 

for 12 h, the reaction mixture was concentrated. The residue was rinsed with 

dichloromethane (2 × 15 mL) and combined with methanol (20 mL). The solid was filtered 

off and the filtrate was concentrated in vacuo. The residue was then purified by column 

chromatography over silica gel using 1:4 methanol/methylene chloride as the eluent to give 

an off-white powder (0.24 g, 89%).
1
H NMR (400 MHz, CDCl3), δ: 9.14 (d, J ꞊ 4.4 Hz, 1H), 

8.47 (s, 1H), 8.27 (d, J ꞊ 6.8 Hz, 1H), 7.76 (m, 2H), 7.56 (m, 2H),  7.30 (m, 2H), 7.08 (d, J ꞊ 

8.8 Hz, 2H), 6.97 (d, J ꞊ 7.2 Hz, 1H), 5.32 (s, 2H). 
13

C NMR (100 MHz, CDCl3, δ): 131.3, 

131.2, 131.2, 131.2, 129.4, 128.3, 128.0, 127.4, 127.4, 126.0, 126.0, 123.6, 123.0, 116.7, 

116.7, 116.7, 116.7, 116.7, 63.0. ESI-HRMS (m/z): [M-Na]
 -

 calcd for C19H14N3O4S, 

380.0711; found, 380.0701. 

MINP-COOH: To a 2.0 mL micellar solution of surfactant 1 (9.3 mg, 0.02 mmol) in D2O, 

DVB (2.8 μL, 0.02 mmol), AIBN in DMSO (10 μL of 8.2 mg/mL, 0.0005 mmol), 2 in D2O 

(10 μL, 0.0004 mmol) were added. The mixture was ultrasonicated for 10 min. Compound 3 

(4.13 mg, 0.024 mmol), CuCl2 in D2O (10 μL of 6.7 mg/mL, 0.0005 mmol), and sodium 

ascorbate in D2O (10 μL of 99 mg/mL, 0.005 mmol) were then added and the reaction 

mixture was stirred slowly at room temperature. After 12 h, compound 4 (10.6 mg, 0.04 
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mmol), CuCl2 in D2O (10 μL of 6.7 mg/mL, 0.0005 mmol), and sodium ascorbate in D2O (10 

μL of 99 mg/mL, 0.005 mmol) were added and the mixture was stirred for another 6 h. The 

reaction vial was sealed with a rubber stopper and the reaction mixture was purged with 

nitrogen for 15 min before it was stirred at 75 °C for 16 h. The resultant solution (2.0 mL) 

was cooled to room temperature and poured into acetone (8.0 mL). The precipitate formed 

was washed five times with 1:4 water/acetone mixture and dried overnight in the dark to give 

an off-white powder. The power was dissolved in Millipore water (1 mL) and irradiated in a 

Rayonet reactor for 12 h. Water was removed under reduced pressure and the residual sample 

was washed five times with 1:4 water/acetone mixture in a centrifuge tube and dried to give 

the product as a white powder (15 mg, 75 %). 

MINP-CONHNaph: 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDCI, 10 μL of 61.0 

mg/mL in dry DMF, 0.004 mmol) was added to a stirred solution of MINP-COOH (20.0 mg, 

0.0004 mmol) in dry DMF (1 mL) at 0˚C under nitrogen. After 2 h, 2-aminonaphthalene (10 

μL of 56.2 mg/mL in DMF, 0.004 mmol) was added and the mixture was stirred for 24 h at 

room temperature. The mixture was concentrated in vacuo and poured into 2 mL of acetone. 

The precipitate was collected by centrifugation and rinsed several times with 2 mL of acetone 

to afford the product as an off-white powder (16 mg, 80 %). 
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Figure 6. 
1
H NMR spectra of 1 in CDCl3 (black), alkynyl-SCM in D2O (red), and MINP-

COOH (blue) in D2O 
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Figure 7. (a) Emission spectra of MINPs after different periods of time of UV irradiation, 

showing the release of nitroso derivative 5 to vacate the binding site of MINP. λex= 295 nm, 

[MINPs] = 3 μM. (b) Emission spectra of MINPs without UV irradiation. λex= 295 nm, 

[MINPs] = 3 μM. (c) Emission intensity at 497 nm of MINPs under irradiation (), MINPs 

without irradiation (), and non-imprinted nanoparticles (i.e., nanoparticles prepared without 

template 2 or NINP) under irradiation () for comparison. 



www.manaraa.com

97 

 

Re
la

ti
ve

 s
ca

tt
er

in
g 

In
te

ns
it

y

Re
la

ti
ve

 s
ca

tt
er

in
g 

In
te

ns
it

y

Re
la

ti
ve

 s
ca

tt
er

in
g 

In
te

ns
it

y

(a) (b) (c)

 

Figure 8. Distribution of the hydrodynamic diameters of the nanoparticles in water as 

determined by DLS for (a) alkynyl-SCM, (b) surface-functionalized SCM and (c) MINP-

COOH after purification. 
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Figure 9. Distribution of the molecular weights of MINP-COOH and the correlation curves 

for DLS. The PRECISION DECONVOLVE program assumes the intensity of scattering is 

proportional to the mass of the particle squared. If each unit of building block for the MINP-

COOH is assumed to contain one molecule of compound 1 (MW = 465 g/mol), 1.2 

molecules of compound 3 (MW = 172 g/mol), one molecule of DVB (MW = 130 g/mol), 0.8 

molecules of compound 4 (MW = 264 g/mol), and 0.02 molecules of methacrylic acid  (MW 

= 86 g/mol), the molecular weight of MINP-COOH translates to 50 [= 

50400/(465+1.2×172+130+0.8×264+0.02×86)] of such units.   
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Figure 10. Fluorescence emission spectra of 2-aminonaphthalene in chloroform (red) and 

MINP-CONHNaph in 50 mM Tris buffer, pH 7.4 (blue). The excitation wavelength (λex) was 

set at 300 nm. [naphthyl] = 2.5 μM.   

 

 

Figure 11. Fluorescence emission spectra of 6 (λex = 300 nm) upon addition of different 

concentrations of MINP-COOH in citrate-phosphate buffer (pH 5.0), [6] = 0.50 μM.  
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Figure 12. (a) Fluorescence emission spectra of 6 (λex = 300 nm) upon addition of different 

concentrations of MINP-COOH in 10 mM citrate-phosphate buffer (pH 6.2). [6] = 0.50 μM. 

(b) Nonlinear least squares fitting of the emission intensity of 6 at 415 nm to a 1:1 binding 

isotherm; Ka = 6.5 ± 0.1 × 10
5
 M

-1
. 

 

 

Figure 13. (a) Fluorescence emission spectra of 6 (λex = 300 nm) upon addition of different 

concentrations of MINP-COOH in 50 mM Tris buffer (pH 8.5). [6] = 0.50 μM. (b) Nonlinear 

least squares fitting of the emission intensity of 6 at 415 nm to a 1:1 binding isotherm; Ka = 

1.2 ± 0.3 × 10
6
 M

-1
. 
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Figure 14. (a) Fluorescence emission spectra of 6 (λex = 300 nm) upon addition of different 

concentrations of MINP-COOH in 50 mM Tris buffer (pH 9.5). [6] = 0.50 μM. (b) Nonlinear 

least squares fitting of the emission intensity of 6 at 415 nm to a 1:1 binding isotherm; Ka = 

8.8 ± 0.2 × 10
5
 M

-1
. 

 

Figure 15. (a) Fluorescence emission spectra of 7 (λex = 300 nm) upon addition of different 

concentrations of MINP-COOH in 10 mM citrate-phosphate buffer (pH 2.2). [7] = 0.50 μM. 

(b) Nonlinear least squares fitting of the emission intensity of 7 at 410 nm to a 1:1 binding 

isotherm; Ka = 1.3 ± 0.3 × 10
6
 M

-1
. 
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Figure 16. (a) Fluorescence emission spectra of 7 (λex = 300 nm) upon addition of different 

concentrations of MINP-COOH in 10 mM citrate-phosphate buffer (pH 2.6). [7] = 0.50 μM. 

(b) Nonlinear least squares fitting of the emission intensity of 7 at 410 nm to a 1:1 binding 

isotherm; Ka = 1.3 ± 0.2 × 10
6
 M

-1
. 

 

 

Figure 17. (a) Fluorescence emission spectra of 7 (λex = 300 nm) upon addition of different 

concentrations of MINP-COOH in 10 mM citrate-phosphate buffer (pH 3.0). [7] = 0.50 μM. 

(b) Nonlinear least squares fitting of the emission intensity of 7 at 410 nm to a 1:1 binding 

isotherm; Ka = 4.3 ± 0.1 × 10
5
 M

-1
. 
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Figure 18. (a) Fluorescence emission spectra of 7 (λex = 300 nm) upon addition of different 

concentrations of MINP-COOH in 10 mM citrate-phosphate buffer (pH 4.0). [7] = 0.50 μM. 

(b) Nonlinear least squares fitting of the emission intensity of 7 at 410 nm to a 1:1 binding 

isotherm; Ka = 2.7 ± 0.7 × 10
5
 M

-1
. 

 

Figure 19. (a) Fluorescence emission spectra of 7 (λex = 300 nm) upon addition of different 

concentrations of MINP-COOH in 10 mM citrate-phosphate buffer (pH 5.0). [7] = 0.50 μM. 

(b) Nonlinear least squares fitting of the emission intensity of 7 at 410 nm to a 1:1 binding 

isotherm; Ka = 8.6 ± 0.4 × 10
4
 M

-1
. 



www.manaraa.com

103 

 

0

150

300

450

330 430 530 630
In

te
n

s
it

y
 (

a
.u

.)
l (nm)

(a)

0–13.5 μM

 

Figure 20. (a) Fluorescence emission spectra of 7 (λex = 300 nm) upon addition of different 

concentrations of MINP-COOH in 10 mM citrate-phosphate buffer (pH 6.2). [7] = 0.50 μM.  

 

 

Figure 21. (a) Fluorescence emission spectra of 8 (λex = 300 nm) upon addition of different 

concentrations of MINP-COOH in 10 mM sodium citrate buffer (pH 3.0). [8] = 0.50 μM. (b) 

Nonlinear least squares fitting of the emission intensity of 8 at 350 nm to a 1:1 binding 

isotherm; Ka = 9.5 ± 0.8 × 10
5
 M

-1
. 
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Figure 22. (a) Fluorescence emission spectra of 8 (λex = 300 nm) upon addition of different 

concentrations of MINP-COOH in 50 mM Tris buffer (pH 7.4). [8] = 0.50 μM. (b) Nonlinear 

least squares fitting of the emission intensity of 8 at 350 nm to a 1:1 binding isotherm; Ka = 

6.3 ± 0.6 × 10
5
 M

-1
.  

 

 

Figure 23. (a) Fluorescence emission spectra of 9 (λex = 300 nm) upon addition of different 

concentrations of MINP-COOH in 10 mM sodium citrate buffer (pH 3.0). [9] = 0.50 μM. (b) 

Nonlinear least squares fitting of the emission intensity of 9 at 350 nm to a 1:1 binding 

isotherm; Ka = 6.4 ± 0.8 × 10
5
 M

-1
. 
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Figure 24. (a) Fluorescence emission spectra of 9 (λex = 300 nm) upon addition of different 

concentrations of MINP-COOH in 50 mM Tris buffer (pH 7.4). [9] = 0.50 μM. (b) Nonlinear 

least squares fitting of the emission intensity of 9 at 350 nm to a 1:1 binding isotherm; Ka = 

5.4 ± 0.4 × 10
5
 M

-1
. 

 

Figure 25. ITC titration curves obtained at 298 K for the binding of (a) 7 (0.5 mM) by MINP-

COOH (50 μM); (b) 8 (0.2 mM) by MINP-COOH (8 μM); and (c) 9 (0.2 mM) by MINP-

COOH (8 μM) in 50 mM Tris buffer (pH 7.4). The data correspond to entries 2, 3, and 4 

respectively, in Table 1. The top panel shows the raw calorimetric data. The area under each 
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peak represents the amount of heat generated at each ejection and is plotted against the molar 

ratio of MINP to the substrate. The solid line is the best fit of the experimental data to the 

sequential binding of N equal and independent binding sites on the MINP. The heat of dilution 

for the substrate, obtained by adding the substrate to the buffer, was subtracted from the heat 

released during the binding. Binding parameters were auto-generated after curve fitting using 

Microcal Origin 7. 

 

Figure 26. ITC titration curves obtained at 298 K for the binding of (a) 10 (2 mM) by MINP-

COOH (0.1 mM); (b) 11 (10 μM) by MINP-COOH (10 μM); and (c) 12 (0.8 mM) by MINP-

COOH (30 μM) in 50 mM Tris buffer (pH 7.4). The data correspond to entries 5, 6, and 7 

respectively, in Table 1. The top panel shows the raw calorimetric data. The area under each 

peak represents the amount of heat generated at each ejection and is plotted against the molar 

ratio of MINP to the substrate. The solid line is the best fit of the experimental data to the 

sequential binding of N equal and independent binding sites on the MINP. The heat of dilution 

for the substrate, obtained by adding the substrate to the buffer, was subtracted from the heat 

released during the binding. Binding parameters were auto-generated after curve fitting using 

Microcal Origin 7. 
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Figure 27. ITC titration curves obtained at 298 K for the binding of (a) 6 (0.25 mM) by 

MINP-CONHNaph (20 μM); and (b) 12 (0.25 mM) by MINP-CONHNaph (10 μM) in 50 mM 

Tris buffer (pH 7.4).  The data correspond to entries 8 and 9, respectively, in Table 1. The top 

panel shows the raw calorimetric data. The area under each peak represents the amount of heat 

generated at each ejection and is plotted against the molar ratio of MINP to the substrate. The 

solid line is the best fit of the experimental data to the sequential binding of N equal and 

independent binding sites on the MINP. The heat of dilution for the substrate, obtained by 

adding the substrate to the buffer, was subtracted from the heat released during the binding. 

Binding parameters were auto-generated after curve fitting using Microcal Origin 7. 
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CHAPTER 5 

POLYMERIC NANOPARTICLE RECEPTORS AS SYNTHETIC ANTIBODIES FOR 

NONSTEROIDAL ANTI-INFLAMMATORY DRUGS (NSAIDs) 

 

 

A manuscript submitted to the ACS Biomaterials Science & Engineering, 2015. 

Joseph K. Awino and Yan Zhao 

 

Abstract 

The wide usage and subsequent leakage of nonsteroidal anti-inflammatory drugs 

(NSAIDs) into the environment present an urgent need to create materials for selective 

binding of NSAID drugs, which are highly similar to one another in structure and 

functionality. Surface–core double-cross-linking of cationic micelles containing Naproxen or 

Indomethacin as the template yielded molecularly imprinted nanoparticles (MINPs) for these 

drugs. The nanoparticle receptors resembled water-soluble proteins in their hydrophilic 

exterior and hydrophobic core with guest-tailored binding pockets. Their binding selectivity 

for their templates over other NSAID analogues rivaled that of antibodies prepared though 

much lengthier procedures. 

 

Figure1. Representation for the general design 
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Introduction 

The immune system has remarkable abilities to generate antibodies for virtually any 

molecule of biological interest. The strong and specific recognition of antigens by their 

antibodies is at the heart of immune response and vital to the biological host’s survival. Their 

extraordinary molecular recognition also makes antibodies powerful tools in diagnostics, 

therapeutics, imaging, analysis, and elucidation of biological mechanisms.
1
  

However, antibodies are expensive biomolecules requiring lengthy procedures to 

produce. Immunization of animals itself often takes weeks of time, even if the molecules 

readily elicit immune responses. The (polyclonal) antibodies generated then need to be 

isolated and purified. Monoclonal antibodies are even more cumbersome to prepare, as they 

need to come from a single cell line. Just like any proteins, antibodies are subject to 

denaturation, whether by adverse temperatures, adsorption to surfaces, exposure to organic 

solvents, surfactants, or other chemical entities. 

Chemists for decades have tried to create receptors for molecules of interest,
2,3

  in a 

way similar to what nature does with antibodies. Although remarkable receptors have been 

made, sometimes with biological affinity and specificity,
4-6

  synthetic receptors tend to be 

limited to specific classes of molecules or ions and a general method to create strong and 

specific antibody-resembling receptors remains an elusive goal.  

Nonsteroidal anti-inflammatory drugs (NSAIDs, e.g., 1–5) are one of the most used 

over-the-counter drugs.
7
 Because of their wide usage and subsequent leakage into the 

environment, there is high interest in monitoring and detecting them in nature.
8
 In addition to 

chemical methods, enzyme-linked immunosorbent assays (ELISA), which rely on NSAID-

specific antibodies for operation, have been used for NSAID drug analysis.
9,10

 The challenge 
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to design antibody-like receptors for these drugs (1–5) lies in their structual similarity: all 

have a carboxylate and a hydrophobic aromatic moeity. Naproxen and Ibuprofen (or 

Ketoprofen) in particular are closely related to one another in size and shape of the aromatic 

group. Needless to say, to recognize these drugs selectively, the receptor needs to have 

remarkable precision in its binding. Ideally, one also needs the receptors to function in water 

for drug monitoring or analysis.  

 

  Herein, we report that antibody-like polymeric nanoparticle receptors can be created for 

NSAIDs through molecular imprinting in cross-linked micelles. The binding selectivity 

displayed by our “synthetic antibodies” was comparable to that found in biologically 

generated antibodies. Our materials, however, can be produced in 2–3 days rather than weeks 

without special techniques, provided that the building blocks (the polymerizable surfactants 

and cross-linkers) are available. 
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Results and Discussion 

Materials Design and Synthesis 

The synthesis of our nanoparticle receptors starts with micellization of cationic 

surfactant 6 above its 0.55 mM of critical micelle concentration (CMC) in water (Scheme 1). 

Since the headgroup of this surfactant is a tripropargylammonium cation, its micellization 

places a layer of terminal alkynes on the surface of the micelle. In the presence of a diazide 

cross-linker (7) and Cu(I) catalysts, the highly efficient copper-catalyzed alkyne–azide 

cycloaddition
11

 quickly cross-links the surface of the micelles to afford alkynyl-surface 

crosslinked micelles (alkynyl-SCMs) as water-soluble nanoparticles.  

In our previous work, we have shown that water- or organic-soluble azide-

functionalized ligands could be easily installed on the SCM surface if a sufficient number of 

alkyne groups are left on the surface of the cross-linked micelles.
12-15

 This feature was 

achieved by using a ratio of [6]/[7] = 1:1.2 during the SCM preparation, as an excess of 

alkynes will be left after cross-linking. The alkynyl-SCMs were functionalized with sugar-

derived ligand 8 so that the resulting nanoparticles were highly hydrophilic on the surface 

and completely soluble in water. 

The details of the molecular imprinting procedure has been reported previously.
16

 

Briefly, the anionic and hydrophobic nature of the NSAID (e.g., 1 or 2) allowed it to be 

readily incorporated into the cationic micelle and the resulting SCM. After the surface cross-

linking and functionalization, we initiated core cross-linking of the methacrylate of 6 around 

the template. This step is the key to the molecular imprinting to form the final binding 

pocket. To facilitate this process, we solubilized 1 equiv of divinylbenzene (DVB) and 5 mol 

% of 2,2-dimethoxy-2-phenylacetophenone (DMPA, a photolytic radical initiator) in the very 
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beginning of the preparation and irradiated the surface-functionalized SCMs with UV light. 

UV irradiation initiated free radical polymerization between the methacrylate and DVB. 

Because the template molecule (1 or 2) had neither alkyne nor methacrylate to participate in 

any cross-linking, it acted as a place holder throughout the preparation while surface- and 

core cross-linking took place around the template to afford the binding pocket.  

Molecularly imprinted polymers (MIPs)
17-25

 have been reported in the literature for 

NSAID drugs.
26-29

 They are typically prepared by polymerization of a functionalized 

monomer such as 4-vinylpyridine that binds the carboxylic acid of the NSAID and a large 

amount of a vinyl cross-linker. The bulk polymerization normally yields insoluble cross-

linked polymers that need to be ground into smaller particles, sieved, and washed. In 

contrast, since the core-cross-linking was confined with each SCM in our case, the final 

molecularly imprinted nanoparticles (MINPs) were water-soluble nanoparticles similar to a 

water-soluble protein in size, hydrophilic exterior, hydrophobic interior, and a specific 

binding pocket in the hydrophobic core.  

   

Scheme 1. Preparation of MINP with Naproxen as the template. 
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The MINP synthesis was monitored by 
1
H NMR spectroscopy and dynamic light 

scattering (DLS). The SCMs had been characterized earlier additionally by mass 

spectrometry (after cleaving the 1,2-diol cross-linkages) and TEM.
12

 Upon surface-cross-

linking, all the 
1
H NMR signals of surfactant 6 showed characteristic broadening 

(Experimental Section, Figure 3). The alkenic and aromatic protons of both 6 and DVB 

remained clearly visible in the SCMs but disappeared after the core-cross-linking. 

Disappearance of the alkenic protons should be caused by their consumption by the 

polymerization. The aromatic protons disappeared most likely because the high cross-linking 

density of the core restrained their movements in the core. DLS showed that the alkynyl-

SCM, the surface-functionalized SCM, and the final MINP-1 (i.e., MINP  prepared with 1 as 

the template) had an average size of 4.0, 6.3, and 5.0 nm, respectively (Figure 5). The size 

change was consistent with our previous results,
16

 suggesting that the nanoparticles became 

larger upon surface decoration and shrank during core-cross-linking.     

The MINPs were purified by precipitation from acetone and repeated washing with 

water/acetone and methanol/acetic acid. The yield of the final MINPs was typically >80%. 

The fluorescence of Naproxen allowed us to monitor its removal from MINP-1 by the 

disappearance of its characteristic emission peak at 360 nm. According to DLS, the final 

MINP-1 averaged 5.0 nm in diameter, which translated to a molecular weight of 51,000 

Daltons (Figure 6). Following the same procedures, we also prepared MINP-2 against 

Indomethacin and characterized the materials similarly (Figures 7–9). 
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Binding Studies 

In traditional MIPs, the insolubility of the receptors means that binding needs to be 

determined indirectly, often by measuring the amounts of guest absorbed by different 

amounts of polymer beads.
17-25

 Neither the number of binding sites on a polymer bead nor 

their binding affinity can be controlled, as the polymer beads are obtained by grinding and 

sieving of insoluble macroporous polymers. A heterogeneous population of binding sites is 

typically obtained from such imprinting. 

The water-solubility of MINP-1 and the fluorescence of Naproxen enabled us to 

directly study the binding of MINP-1 as a receptor by fluorescence titration. As shown by 

Figure 2, upon titration of Naproxen by different concentrations of MINP-1 in an aqueous 

Tris buffer (50 mM Tris, pH = 7.4), the emission peak of the guest at 360 nm gradually 

decreased and a new peak at 430 nm emerged. The data fit nearly perfectly to a 1:1 binding 

isotherm to afford a binding constant (Ka) of (1.1 ± 0.2) × 10
6
 M

-1
. The binding constant 

translates to a binding free energy of -ΔG = 8.2 kcal/mol. 

 

 

Figure 2. (a) Fluorescence emission spectra of 1 (λex = 310 nm) upon addition of different 

concentrations of MINP-1. (b) Nonlinear least squares curving fitting of the emission 

intensity of 1 at λ = 358 nm as a function of MINP-1 concentration.  [2] = 0.25 μM. 
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As mentioned earlier, a successful receptor for a NSAID not only needs to have 

strong binding but also low cross-reactivity with its structural analogues. Since Naproxen is 

the only fluorescent molecule among the NSAIDs chosen, we turned to isothermal titration 

calorimetry (ITC) to study the binding of the other drugs by MINP-1. As shown by Figure 

3a, the titration data for Naproxen and MINP-1 yielded a Ka value of (0.91 ± 0.04) × 10
6
 M

-1
, 

experimentally the same as the value obtained from the fluorescence titration. 

  

(a) (b)

 

Figure 3. ITC titration curves obtained at 298 K for the binding of (a) 1 by MINP-1 and (b) 

(a) 2 by MINP-2. The data correspond to entries 1 and 7 in Table 1. Additional ITC titration 

curves can be found in the Experimental Section (Figures 10–11). In general, an aqueous 

solution of an appropriate guest in Tris buffer (50 mM Tris, pH = 7.4) was injected in equal 

steps into 1.43 mL of the corresponding MINP solution in the same buffer. The top panel 

shows the raw calorimetric data. The area under each peak represents the amount of heat 

generated at each ejection and is plotted against the molar ratio of the MINP to the guest. The 

smooth solid line is the best fit of the experimental data to the sequential binding of N 

binding site on the MINP. The heat of dilution for the guest, obtained by adding the guest to 

the buffer, was subtracted from the heat released during the binding. Binding parameters 

were auto-generated after curve fitting using Microcal Origin 7. 
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Having confirmed the good agreement between the fluorescence and ITC binding 

data, we proceeded with the ITC binding studies of the other NSAIDs (2–5) by MINP-1. 

Recognizing the structural and functional-group similarity between the template (Naproxen) 

and Ibuprofen or Ketoprofen, we were apprehensive whether the MINP was able to 

distinguish these structural analogues.  

Table 1. Binding data for MINPs obtained by ITC.
a 

Entry Guest Host 
Ka  

(104 M-1) 

-ΔG  

(kcal/mol) 
CRRb N 

1 1 MINP-1 112 ± 20 8.2 --
c 

--
c 

2 1 MINP-1 91 ± 4 8.1 1 0.6 ± 0.1 

3 2 MINP-1 0.8 ± 0.1 5.6 0.01 1.1 ± 0.1 

4 3 MINP-1 8.7 ± 0.5 6.7 0.1 1.0 ± 0.1 

5 4 MINP-1 2.9 ± 0.4 6.1 0.03 0.9 ± 0.1 

6 5 MINP-1 3.7 ± 0.2 6.2 0.04 1.1 ± 0.1 

7 2 MINP-2 98 ± 5 8.2 1 1.1 ± 0.1 

8 1 MINP-2 5.2 ± 1.2 -6.4 0.05 0.7 ± 0.1 

9 3 MINP-2 8.0 ± 0.1 -6.7 0.08 0.6 ± 0.1 

10 4 MINP-2 0.8 ± 0.1 -5.3 0.01 0.4 ± 0.1 

11 5 MINP-2 9.4 ± 1.0 -6.8 0.10 0.4 ± 0.1 

a
 The titrations were generally performed in duplicates in 50 mM Tris buffer (pH 7.4) and the 

errors between the runs were <15%.  
b
 CRR = cross-reactivity = binding constant of a given 

compound by a MINP receptor normalized to that of the template by the same MINP  
c
 The 

binding constant was obtained from fluorescence titration and thus was not compared with 

the ITC binding data. 

The Ka values for 2, 3, 4, and 5 were determined to be 8.0 × 10
3
, 8.7 × 10

4
, 2.9 × 10

4
, 

and 3.7 × 10
4
 M

-1
, respectively (Table 1, entries 3–6). Thus, the binding constants for these 
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other NSAIDs by MINP-1 were at least an order of magnitude weaker than that for the 

Naproxen template. In the literature, the specificity of an antibody is represented by its cross-

reactivity with ligands analogous to its antigen; the cross-reactivity may be obtained from 

either ITC binding data
30

 or antibody-based assays such as ELISA.
9
 The binding constants in 

our studies translate to cross-reactivity of 0.01, 0.1, 0.03 and 0.04 for 2 (Indomethacin), 3 

(Ibuprofen), 4 (Ketoprofen), and 5 (Dichlofenac), respectively. 

In the literature, polyclonal antibodies have been prepared for Naproxen.
9
 The 

immunization (of rabbits) was reported to take 25 weeks. Competitive ELISA was then used 

to determine the specificity of the antibody for both NSAID and other anlogues. The cross-

reativity for Ibuprofen and Diclofanac was 0.09 and 0.04, respectively.
9
 Thus, the specificity 

displayed by our plastic antibodies were essentially identical to that exhibited by the 

antibodies generated through a lengthy and more expensive procedures. 

Since all the NSAIDs studied carry the identical carboxylate, the selectivity of our 

MINP should derive from the size/shape of the binding pocket. We were delighted to see that 

Ibuprofen and Ketoprofen, two closely related structures of Naproxen could be distinguished 

so nicely by MINP-1. Apparently, the binding pocket was so well formed that even an 

insertion of a single ketone in the middle of the aromatic moiety (in Ketoprofen) was not 

tolerated by the binding pocket.  

Another feature of our MINP is its controllable number of binding sites. The ITC 

titration revealed that the number of binding site per particle averaged 0.6–1.1. The number 

agreed well with our prepration: since the micelle aggreation number was ca. 50 and the 

[template]/[surfactant] ratio was 1:50 in our MINP prepration,
9
 we anticipated a single 

binding site per particle on average. The number of binding sites obtained also compared 
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favorably with typical numbers of protein/antibody receptors, as inactive receptors, 

impurities, and inaccurities in the molecular weight of the materials frequently cause 

diviation of the binding site from unity, even when the orignial bioreceptor contains a single 

binding site.
30

 

Indomethacin (2) was the largest NSAID drug in our study. Because it is generally 

easier to fit a smaller molecule in a larger binding pocket than vice versa, we were especially 

curious about the specificity of MINP-2 for these NSAIDs. As shown in Table 1 (entry 7, see 

Figure 2b for the titration curve), the binding constant of MINP-2 for the template itself was 

(0.98 ± 0.05) × 10
6
 M

-1
, very similar to the value for Naproxen by MINP-1. Because 

Indomethacin is signficantly larger in size than Naproxen, one would anticipate that the 

binding of the larger ligand by its correspoinding MINP receptor should be stronger, as a 

major driving force in the binding should be the expulsion of the water molecules in the 

binding pocket by the corresponding ligand and a larger guest should expel more water 

molecules from the (larger) binding pocket. 

There could be several possible reasons why the larger Indomethacin did not display 

stronger binding than the smaller Naproxen. First, Indomethacin contained an amide group in 

the structure. The amide carbonyl oxygen is an excellent hydrogen-bond acceptor and is 

expected to be solvated quite well by water prior to its entrance into the binding pocket. 

Desolvation of the guest costs free energy and is expected to negatively impact the binding 

affinity. Second, if the amide group was hydrophilic enough to stay near the surface of the 

micelle during molecular imprinting, the binding pocket obtained from Indomethacin in 

MINP-2 could be shallower than that obtained from Naproxen in MINP-1. If this is indeed 

the case, the shallower binding pocket would reduce the hydrophobic driving force for the 
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binding, as part of the guest molecule might still be exposed to water after the binding. In 

contrast, a more deeply embedded binding pocket should bury the hydrophobic guest more 

completely; thus, the smaller but overall more hydrophobic aromatic group in Naproxen 

might be better shielded from water by its binding pocket.  Third, a rigid aromatic group (of 

Naproxen and the top protion of Indomethacin) has little conformational freedom whereas 

the tertiary amide bond of Indomethacin could adopt either a  trans or cis configuration prior 

to binding. Since binding will fix the conformation of the guest (by fitting the guest into the 

pre-formed binding pocket), the loss of conformaitonal entropy will also lower the potential 

driving force for the binding. 

Although the binding for Indomethacin was not signfiicantly stronger than for 

Naproxen by their corresponding MINPs, it is encouraging to see that MINP-2 remained 

highly selective. The cross-reactivity of this MINP was 0.05, 0.08, 0.01 and 0.1 for 1 

(Naproxen), 3 (Ibuprofen), 4 (Ketoprofen), and 5 (Dichlofenac), respectively. Thus, similar 

to MINP-1, the highest cross-reactivity for the non-templated NSAIDs was 0.1, similar to 

what was observed for the natural antibodies. 

A close examination of our binding data suggests that a smaller guest indeed can fit 

into a larger pocket more easily than a larger guest does a smaller pocket. For example, the 

cross-reactivity of Indomethacin relative to Naproxen in MINP-1 was 0.01, indicating that 

the large guest had difficulty fitting into the binding pocket generated by the small guest. The 

cross-reactivity of Naproxen to Indomethacin in MINP-2, however, was 0.05. Thus, although 

the pocket was quite selective for the NSAIDs studied, relatively speaking, a small guest 

indeed fitted better to a larger pocket than vice versa.   
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Conclusion 

Traditionally, chemists use molecular synthesis to create discrete, well-defined 

molecular receptors for molecules of interest.
2,3

 However, building concave receptors with 

guest-complementary binding surfaces require ingenious molecular design, lengthy synthesis, 

and many times is simply impossible for complex shaped/functionalized molecules or simple 

molecules lacking proper functional-group handles. As shown in this study, the great 

similarity and subtle differences among the NSAIDs make it extremely challenging to create 

specific molecular receptors for them. Although one could turn to biological methods to 

generate antibodies for the drugs, the procedures involve lengthy immunization and 

cumbersome purification and the resulting biomolecules are unstable under many conditions. 

In contrast, our molecular imprinting in cross-linked micelles readily yielded “synthetic 

antibodies” with antibody-like specificity. Although higher binding affinities (than the 

current micromolar affinities) would be better, the ease of the synthesis, the diversity of the 

MINP receptors that can be created, the strong tolerance of the materials for organic solvent 

and high temperatures due to their high cross-linking density,
16

 and the excellent molecular 

recognition of the materials suggest that MINPs could become attractive substitutes for 

antibodies in appropriate applications. 
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Experimental Section 

General Method 

Methanol, methylene chloride, and ethyl acetate were of HPLC grade and were purchased 

from Fisher Scientific. All other reagents and solvents were of ACS-certified grade or higher, 

and were used as received from commercial suppliers. Routine 
1
H and 

13
C NMR spectra 

were recorded on a Bruker DRX-400 or on a Varian VXR-400 spectrometer. ESI-MS mass 

was recorded on Shimadzu LCMS-2010 mass spectrometer. Fluorescence spectra were 

recorded at ambient temperature on a Varian Cary Eclipse Fluorescence spectrophotometer.  

ITC was performed using a MicroCal VP-ITC Microcalorimeter with Origin 7 software and 

VPViewer2000 (GE Healthcare, Northampton, MA). 

 

Syntheses 

Typical MINP synthesis. To a micellar solution of surfactant 6 (9.3 mg, 0.02 mmol) in 

D2O (2.0 mL), divinylbenzene (DVB, 2.8 μL, 0.02 mmol), 1 in D2O (10 μL of a solution of 

10.1 mg/mL, 0.0004 mmol), and 2,2-dimethoxy-2-phenylacetophenone (DMPA) in DMSO 

(10 μL of a 12.8 mg/mL, 0.0005 mmol) were added.
31

 The mixture was ultrasonicated for 10 

min. Compound 6 (4.1 mg, 0.024 mmol), CuCl2 in D2O (10 μL of 6.7 mg/mL, 0.0005 mmol), 

and sodium ascorbate in D2O (10 μL of 99 mg/mL, 0.005 mmol) were then added and the 

reaction mixture was stirred slowly at room temperature for 12 h. Compound 8 (10.6 mg, 

0.04 mmol), CuCl2 (10 μL of a 6.7 mg/mL solution in D2O, 0.0005 mmol), and sodium 

ascorbate (10 μL of a 99 mg/mL solution in D2O, 0.005 mmol) were then added and the 

solution stirred for another 6 h at room temperature. The reaction mixture was transferred to 

a glass vial, purged with nitrogen for 15 min, sealed with a rubber stopper, and irradiated in a 



www.manaraa.com

131 

 

Rayonet reactor for 12 h. 
1
H NMR spectroscopy was used to monitor the progress of 

reaction. The reaction mixture was poured into acetone (8 mL). The precipitate was collected 

by centrifugation and washed with a mixture of acetone/water (5 mL/1 mL) three times. The 

crude product was washed with methanol/acetic acid (5 mL/0.1 mL) five times, and then with 

methanol (2 mL), followed by excess acetone. The off-white product was dried in air to 

afford the final MINPs (17 mg, 85%). 

a

b

c

 

Figure 4. 
1
H NMR spectra of: (a) 6 in CDCl3, (b) alkynyl-SCM in D2O, and (c) MINP-1 in 

D2O. 
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Figure 5. Distribution of the hydrodynamic diameters of the nanoparticles in water as 

determined by DLS for (a) alkynyl-SCM, (b) surface-functionalized SCM and (c) MINP-1 

after purification.  
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Figure 6. Distribution of the molecular weights of MINP-1 and the correlation curves for 

DLS. The PRECISION DECONVOLVE program assumes the intensity of scattering is 

proportional to the mass of the particle squared. 

 

a

b

c

 

Figure 7. 
1
H NMR spectra of: (a) 6 in CDCl3, (b) alkynyl-SCM in D2O, and (c) MINP-2 in 

D2O. 
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Figure 8. Distribution of the hydrodynamic diameters of the nanoparticles in water as 

determined by DLS for (a) alkynyl-SCM, (b) surface-functionalized SCM and (c) MINP-2 

after purification. 
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Figure 9. Distribution of the molecular weights of MINP-2 and the correlation curves for 

DLS. The PRECISION DECONVOLVE program assumes the intensity of scattering is 

proportional to the mass of the particle squared.  
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Figure 10. ITC titration curves obtained at 298 K for the binding of (a) 2 (3.0 mM) by MINP-

2 (0.2 mM); (b) 3 (1.2 mM) by MINP-2 (0.1 mM); (c) 4 (6.0 mM) by MINP-2 (0.5 mM); and 

(d) 5 (5.0 mM) by MINP-1 (0.2 mM);   in 50 mM Tris buffer (pH 7.4). The data correspond to 

entries 3, 4, 5, and 6, respectively, in Table 1. The top panel shows the raw calorimetric data. 

The area under each peak represents the amount of heat generated at each ejection and is 

plotted against the molar ratio of MINP to the substrate. The solid line is the best fit of the 

experimental data to the sequential binding of N equal and independent binding sites on the 

MINP. The heat of dilution for the substrate, obtained by adding the substrate to the buffer, 

was subtracted from the heat released during the binding. Binding parameters were auto-

generated after curve fitting using Microcal Origin 7. 
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Figure 11. ITC titration curves obtained at 298 K for the binding of (a) 1 (2.5 mM) by MINP-

5 (0.2 mM); (b) 3 (5.0 mM) by MINP-5 (0.4 mM); (c) 4 (6.0 mM) by MINP-5 (0.5 mM); and 

(d) 5 (2.5 mM) by MINP-2 (0.2 mM);   in 50 mM Tris buffer (pH 7.4). The data correspond to 

entries 8, 9, 10, and 11, respectively, in Table 1. The top panel shows the raw calorimetric 

data. The area under each peak represents the amount of heat generated at each ejection and is 

plotted against the molar ratio of MINP to the substrate. The solid line is the best fit of the 

experimental data to the sequential binding of N equal and independent binding sites on the 

MINP. The heat of dilution for the substrate, obtained by adding the substrate to the buffer, 

was subtracted from the heat released during the binding. Binding parameters were auto-

generated after curve fitting using Microcal Origin 7. 
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CHAPTER 6 

RIGIDITY VERSUS AMPHIPHILICITY IN TRANSMEMBRANE NANOPORE 

FORMATION BY CHOLATE-BASED MACROCYCLES 

 

A paper published in Supramolecular Chemistry, 2014, 26, 302-311. 

Joseph K. Awino and Yan Zhao 

 

Abstract 

Amphiphilic macrocycles consisting of cholates and L-tryptophan were prepared by 

the copper-catalyzed alkyne–azide cycloaddition (CuAAC). The macrocycles helped glucose 

permeate lipid bilayer membranes. The macrocycle with two cholates was significantly more 

active in the glucose transport than the one with three cholates. Inclusion of 30–50% 

cholesterol in the bilayer accelerated the glucose transport monotonously. The unusual 

cholesterol effect was explained by the hydrophobically driven pore formation, in which the 

associative interactions of the water molecules inside the macrocycles prompted the 

macrocycles to stack over one another to avoid unfavorable water–lipid hydrocarbon contact. 

Fluorescence quenching by water- and oil-soluble quenchers provided additional evidence 

for the better penetration of the dicholate macrocycle into the bilayers, consistent with the 

stacking model. Rigidity in the macrocycle structure was hypothesized to be the main reason 

for the higher transport activity and deeper membrane-penetration of the dicholate 

macrocycle in comparison to those of the tricholate. 
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Figure 1. Stacking of macrocyclic oligocholates 

Introduction 

Controlling the permeability of lipid membranes is a highly important but challenging 

goal in modern bioorganic chemistry. From the mechanistic point of view, such studies can 

shed light on biological molecular transport, a fundamental process in numerous functions 

including signaling and metabolism.
1
 Molecular transport across lipid bilayers is also critical 

to drug delivery, especially when a drug is potent but lacks the necessary pharmacokinetic 

properties to get inside the targeted cell. 

Among various transporters to help hydrophilic molecules permeate lipid bilayers, 

molecules forming transmembrane (TM) nanopores are particularly interesting. 
2
 Many pore-

forming peptides and proteins exist in nature, enabling processes both vital 
1 

and hostile (e.g., 

viral infection) 
3 

to cells. Because ion conductivity across a nanopore is affected by a 

polynucleotide moving through the pore, protein nanopores are useful for sequencing DNAs 

and RNAs, potentially at the single-molecule level.
4 

Other applications of TM nanopores 

include artificial photosynthesis 
5 

and catalysis. 
6
 

Chemists have devoted significant efforts toward synthetic nanopore-forming agents.
 

2
 To keep a nanosized pore open in a membrane, the structure must withstand the lateral 

pressure of the membrane. 
7
 For this reason, although working extremely well for ion 
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channels, crown ethers and open chain compounds 
8 

are often too flexible for nanopore 

formation. Over the years, a number of designs appeared in the literature, including Ghadiri’s 

cyclic D/L-peptides that self-assembled into TM pores large enough for glucose and glutamic 

acid to pass through. 
9 

The β-barrel pores constructed from oligo(phenylene) derivatives by 

Matile and co-workers proved particularly versatile in structure and function. 
6, 10 

 Other 

examples include the porphyrin-based nanopores by Satake and Kobuke , 
11 

the π-stacked 

aromatic heterocycles by Gong, 
12 

Fyles’ metal-coordinated nanopores, 
13 

and the guanosine 

quartet-based giant ion channels by Davis. 
14

 Recently, Gokel, 
15 

Iengo and Tecilla, 
16

 and 

Hou 
17 

also constructed TM nanopores with pyrogallol[4]arenes, tetraporphyrin 

metallacycles, and pillar[n]arenes, respectively. 

Our group reported that oligocholate macrocycles such as 1 could self-assemble in 

lipid membrane by hydrophobic interactions. 
18

 When amphiphilic macrocycle 1 enters a 

lipid membrane, it carries a pool of water in its highly hydrophilic interior. These water 

molecules are “activated” in the nonpolar lipid membrane because they strongly prefer to 

associate with other water molecules instead of the lipid tails. When the macrocycles exist as 

monomers, whether at the membrane/water interface or deep inside the membrane, these 

water molecules are exposed to the lipid hydrocarbon (Figure 2). When they stack into a TM 

nanopore, however, the water molecules can solvate the introverted hydroxyl and amide 

groups of the macrocycles and still exchange with the bulk water readily. The exchange of 

water also may be important to the pore formation, as the entropic cost for trapping a single 

water molecule can be as high as 2 kcal/mol in the extreme cases. 
19
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Figure 2. Stacking of oligocholate macrocycle 1 in a lipid bilayer membrane to minimize 

unfavorable water–lipid hydrocarbon contract. (Reprinted with permission from Ref 20a.  

Copyright 2013, American Chemical Society, Washington, DC.) 

The main evidence for the stacked nanopores came from leakage assays and various 

control experiments. 
20

 Appropriately labeled compounds also allowed us to characterize the 

pore formation by fluorescence and solid-state NMR spectroscopy. 
21 

In this paper, we 

synthesized two tryptophan-labeled macrocycles 2 and 3. We report the surprising finding 

that the smaller cyclic cholate dimer (2) consistently outperformed the larger trimer (3) as a 

pore-forming agent. Both the glucose transport data and fluorescence studies indicate that the 

dimer penetrates lipid membranes better than the trimer, demonstrating that rigidity is more 

important than mere amphiphilicity in this class of pore-forming agents. 
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Results and Discussion 

Design and Synthesis of tryptophan-labeled oligocholate macrocycles 

We initially designed the dicholate macrocycle (2) to be a glucose-carrier in 

membranes. Davis and others have synthesized various cyclic cholate derivatives 

(cholaphanes, cyclocholamides, and cyclocholates) for binding monosaccharides. 
22 

Because 

dicholate 2 had a similar internal size as some of the sugar-binding cyclocholamides, 
22a

 we 

reasoned that the compound should be able to bind glucose and shuttle it across a membrane. 

 

 

Scheme 1. Syntheses of macrocycles 2 and 3.
 

The motivation for building a glucose-carrier came from the realization that, although 

any nanopore with appropriate size could transport glucose across lipid membranes, 
9a, 18

 

synthetic glucose-carriers are rare. 
23 

On the other hand, most glucose transporters in nature 

(e.g., GluT proteins) operate by the carrier mechanism. 
24 

Carrier-based transporters are 

considered necessary for the chemical imbalance between the intra- and extracellular media, 

as a pore (i.e., the alternative mechanism) large enough for glucose probably would have 

difficulty preventing the passage of smaller molecules and ions (e.g., Na
+
) (24b).  
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Scheme 1 illustrates the syntheses of 2 and 3. In both compounds, L-tryptophan was 

included as a fluorescent label to probe the location and aggregation of the macrocycles in 

lipid membranes. For the synthesis, Boc-protected L-tryptophan (4) was first coupled to 

propargyl amine using benzotriazole-1-yl-oxy-tris-(dimethylamino)-phosphonium 

hexafluorophosphate (BOP). Standard deprotection by trifluoroacetic acid (TFA) yielded 

compound 5 in high yield. The carboxylic acid derivatives 6 and 7, synthesized according to 

previously published procedures, 
25 

were coupled to 5 using BOP to afford 8 and 9, 

respectively. Terminated with an azide on one end and an alkyne on the other, these 

compounds were cyclized readily under the standard click reaction condition (CuSO4/sodium 

ascorbate) 
26 

to afford macrocycles 2 and 3 in good yields. The large difference in the polarity 

between the cyclized and linear compounds made it straightforward to separate the products 

from the starting materials. 

 

Transport of glucose across lipid membranes 

 The pore formation of macrocycle 1 (as well as other analogues) was generally studied 

through its induced leakage of glucose-filled liposomes. 
18, 21a 

A number of unusual 

observations supported the hydrophobically driven stacking model in our earlier work. 
18 

For 

example, Hill analysis indicated that four molecules of the cholate macrocycle were involved 

in the glucose leakage and the height of 1 happened to be roughly 1/4 of the hydrophobic 

thickness of the membrane. Other evidence includes the correlation between the rigidity of 

the macrocycle and the transport of glucose, the inactivity of the linear tricholate, an unusual 

increase of the glucose transport rate with an increase of the membrane hydrophobicity, and a 

counterintuitive faster translocation of maltotriose over glucose (due to the longer sugar’s 
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templating of the nanopore). When the macrocycles contained a pyrene-labeled side chain, 

the formation of pyrene excimer scaled with the thickness and hydrophobicity of the 

membrane, in agreement with the stacking model. 
18, 21a

 When the oligocholates were labeled 

with a fluorescent dansyl group, environmentally sensitive emission, red-edge excitation shift 

(REES), and fluorescence quenching by water- and oil-soluble quenchers consistently 

supported the better penetration of the cyclic trimer into the hydrophobic core of the 

membrane than a linear trimer control. 
21b 

By inserting an 
15

N, 
13

Cα-labeled glycine into the 

cyclic and linear tricholate, we were able to confirm the pore formation additionally using 

13
C-detected 

1
H spin diffusion experiments to probe the depth of insertion of the compounds 

in the membranes, as well as their contact with water molecules. 
21c

 

As with other studies, 
18, 21a 

 we first employed the liposome leakage assay to examine 

glucose transport of 2 and 3 across lipid membranes. Briefly, glucose (300 mM) was first 

encapsulated within POPC/POPG large unilamellar vesicles (LUVs) and the external glucose 

was removed by gel filtration. ATP, NADP, hexokinase, and glucose-6-phosphate 

dehydrogenase were then added to the liposomal solution. In the absence of a glucose-

transporter, the glucose was physically separated from the extravesicular reagents and 

enzymes. If a macrocycle transports glucose across the membranes, its addition will trigger 

the release of glucose, which will be converted by the enzymes while NADP is reduced to 

NADPH. Because of the fast enzymatic kinetics, the formation of NADPH at 340 nm 

normally correlates directly with the rate of glucose efflux. 
27

 The leakage experiments were 

performed in duplicates and the relative error in the data was generally <20%. 

Figure 3a compares the leakage profiles of glucose-filled POPC/POPG LUVs after 

the addition of 0–5 μM of macrocycle 2 () and 3 (). Note that the smaller macrocycle (2) 
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consistently outperformed the larger one (3) in these assays. At 5 μM, for example, dicholate 

2 caused 25% of the 300 mM glucose to leak out of the liposomes at 60 min and tricholate 3 

only 15%. Overall, neither compound could compare with the parent tricholate (1) that 

causes complete leakage of glucose at half of the concentration (2.5 μM) 
18

 

 

   

Figure 3. (a) Percent leakage of glucose at 60 min from POPC/POPG LUVs as a function of 

oligocholate concentration for 2 () and 3 (). (b, c) Glucose leakage profiles from 

POPC/POPG LUVs with 50% of cholesterol upon addition of 0, 0.25, 0.50, 1.25, 2.5, and 5.0 

μM of macrocycle 2 (b) and 3 (c) from bottom to top. [Phospholipids] = 107 μM. UV-vis 

spectra were collected every 3 min from 6–57 min and the liposomes were lysed at 60 min 

upon addition of 1% Triton X-100. The leakage experiments were performed in duplicates 

and the relative error in the data was generally <20%. 

The poor performance of 3 was not surprising. Our previous work indicates that 

rigidity in the macrocycle was important to the pore formation.
 18

 Conformationally flexible 

macrocycles need to flatten out before the stacking could work (Figure 2). In addition, if 

multiple rotatable bonds are introduced between two cholates—as in the case of 3 by the 

triazole and tryptophan—one (or more) of the cholates could turn its hydrophilic face 

outward. As illustrated by Figure 1, the “in–out” amphiphilicity of 1 is necessary for the 
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macrocycle to pull water molecules into the membrane. Any disruption of such topology is 

expected to be detrimental to the pore formation. 

The poorer performance of 2 compared to the parent macrocycle 1 was not a surprise 

either. Because of the importance of the “in–out” amphiphilicity to the stacked nanopores, 

we had thought that it was not possible for 2 to form the TM nanopore, due to its reduced 

number of amphiphilic cholates (vide infra). If 2 serves as a glucose carrier, its efficiency 

was expected to be lower than 1, as a carrier has to move back and forth in order to transport 

its guest while a nanopore can transport its guest continuously. 
28

 

What was surprisingly to us was the better performance of 2 over 3, and the logical 

question became “What was the mechanism of the transport?” One way to understand the 

transport mechanism is to study the effect of lipid composition on the transport rate. 

Cholesterol is known to increase the hydrophobic thickness and the stability 
29 

of POPC 

bilayer and decrease its fluidity. 
30 

 Cholesterol-containing bilayers are much less permeable 

to hydrophilic molecules, glucose included.  
31

 In our hands, the glucose leakage increased 

significantly and monotonously after inclusion of 30 mol % (data not shown) and 50 mol % 

cholesterol for both 2 and 3 (Figure 3b,c). With 5 μM of dicholate 2, the glucose leakage at 

60 min more than doubled with 50% cholesterol in the membranes (compare Figures 3a and 

3b).    

The unusual faster glucose leakage in the presence of cholesterol is the hallmark of 

the stacked nanopores. 
18

 Essentially, although cholesterol makes the membrane more 

hydrophobic, thicker, and more stable, the higher hydrophobicity of the membrane 

strengthens the associative interactions of water molecules inside the macrocycles and, in 
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turn, promotes the pore formation. Glucose leakage becomes faster under such a condition, 

opposite to the conventional expectation based on the permeability of the membrane itself.  

 As mentioned earlier, we had thought cyclic dicholate 2 was too small for the stacked 

nanopores in the beginning of the project. Since the macrocycles rely on the entrapped water 

molecules to provide the hydrophobic driving force for the stacking, the smaller cavity in 2, 

combined with weaker amphiphilicity due to a lower number of the cholates, was anticipated 

to be detrimental to the pore formation. The cholesterol experiments, however, indicated that 

2 clearly did NOT act as a carrier for glucose. The higher leakage rate in cholesterol-

containing membranes was completely opposite to the known cholesterol effect on carrier-

based transporters, 
32

  including oligocholate macrocycles 
20c 

or foldamers 
33 

that operate by 

the carrier mechanism.  
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Figure 4. (a) Percent lipid-mixing in the POPC/POPG LUVs upon the addition of 2. [2] = 

5.0 μM, [Phospholipids] = 54.0 μM. (b) Size (diameter) of the POPC/POPG LUVs before 

() and after () the addition of 2. [2] = 0.29 μM, [Phospholipids] = 2.9 μM. 

We also performed lipid-mixing assays to confirm the intactness of the membranes. 

After all, since glucose can react with the enzymes as long as the two are mixed, glucose 

would appear to “leak” out of the liposomes if the membrane was disrupted or destroyed. In a 

lipid-mixing assay, 1 mol % of NBD- and rhodamine-functionalized lipids are included in the 
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membranes of one batch of liposomes. The labeled and unlabeled LUVs are then incubated 

together while the fluorescence resonance energy transfer (FRET) from NBD- to rhodamine-

functionalized lipids is monitored. 
34 

If a compound causes fusion or destruction of the 

membrane, the fluorescent labels will be diluted, lowering the FRET efficiency in the 

meantime. Figure 4a shows that, even at 10 mol %, twice of the highest tested concentration 

of 2 in the leakage assays, the liposomes exhibited ≤5% lipid mixing. The result suggests that 

the lipid bilayers were intact after the addition of the macrocycle. The experiment also ruled 

out fusion or membrane destruction as the reason for the glucose leakage. 

To further confirm the intactness of the membranes, we monitored the size (diameter) 

of the LUVs by dynamic light scattering (DLS). The liposomes were prepared by the 

extrusion method using 100 nm polycarbonate filters. 
35 

Figure 3b shows the size of the 

liposomes with and without addition of 10 mol % macrocycle 2. There was essentially no 

change in size over the entire course of the experiment, with and without 2. The result 

excluded any mechanisms that cause vesicle aggregation or membrane fusion, as well as 

those that destroy the lipid bilayers. 

 

Fluorescence Quenching 

 The above experiments ruled out carrier-based transport, membrane fusion, or any processes 

that destroy the lipid bilayers as the reason for the glucose leakage induced by macrocycle 2. 

The unusual increase of the transport rate with the addition of 30–50% cholesterol was 

contrary to generic, unspecific disruption or destabilization of lipid membranes but was in 

line with all the previous studies that supported the stacking model. 
18, 20-21 

The tryptophan 

label on the macrocycles allowed us to study the quenching of lipid-solubilized 2 and 3 by 
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water- and lipid-soluble quenchers. Such experiments could help us determine the location of 

the fluorophore (i.e., tryptophan) and understand the behavior of the macrocycles, as 

demonstrated in a previous study. 
21b

 The basic premise for the study is two-fold. First, the 

location of the fluorophore (thus the macrocycle) determines its accessibility to the quencher. 

If the macrocycle stays near the membrane/water interface, it should be accessible to both 

water-soluble and lipid-soluble quenchers. If the macrocycle penetrates deep into the lipid 

membrane, its accessibility to the lipid-soluble quencher should increase whereas that to the 

water-soluble quencher decrease. Second, for an amphiphilic molecule to move into the 

hydrophobic core of a membrane, it has to bury or hide its hydrophilic groups. Aggregation 

(via intermolecular hydrogen bonds) 
36 

and folding (i.e., intramolecular hydrogen bonds for a 

linear oligocholate) 
33, 37 

are possible ways to bury the hydrophilic groups. The pore 

formation in the cyclic oligocholates (Figure 1) fundamentally accomplishes the same. As the 

macrocycle aggregates inside a bilayer, its quenching behavior should be affected. 

Our water-soluble quencher was sodium iodide (NaI) and the lipid-soluble TEMPO. 

21b 
We only studied the quenching with 50 mol % cholesterol in the bilayers, as such 

membranes gave the highest glucose transport activities for the macrocycles (Figure 3). To 

understand the concentration-dependent pore formation, we carried out fluorescence 

quenching at two different concentrations of the oligocholates, i.e., 0.5 and 5 mol % relative 

to the phospholipids. As shown by Figures 3b and 3c, at 0.5 mol % concentration, neither 2 

nor 3 afforded any significance glucose leakage, suggesting a negligible degree of pore 

formation. The leakage increased to 55% with 5 mol % concentration of 2. Thus, some of 

this macrocycle should be in the aggregated, stacked state.             
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Figures 5a and 5b show the quenching plots of 2 and 3 by NaI at the two 

concentrations, respectively. Since both compounds could be quenched by the water-soluble 

quencher, a significant portion of the compounds must be located at the membrane/water 

interface. All the quenching curves exhibited a downward curvature. The downward 

curvature rules out combined dynamic (collision-based) and static (binding-based) 

quenching, which typically shows upward deviation from linearity. 
38 

Simple dynamic or 

static quenching generally affords linear Stern–Volmer plots.  
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Figure 5. (a, b) Fluorescence quenching of macrocycles 2 () and 3 () by NaI. The 

[oligocholate]/[phospholipids] = 0.5 % (a) and 5% (b). [Phospholipids] = 107 μM. (c) 

Modified Stern-Volmer plots for macrocycles 2 () and 3 (). The dashed lines are data 

obtained with [oligocholate]/[phospholipids] = 0.5 %  and the solid lines with 

[oligocholate]/[phospholipids] = 5%. 

Downward deviation from a linear quenching plot is often observed when 

fluorophores are located in the interior of a protein that is inaccessible to the quencher. 
38 
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Because the internal fluorophores are shielded from the quencher, the extent of quenching is 

less than when all the fluorophores are located on the surface, freely accessible to the 

quencher. Under such a scenario, the quenching data may be analyzed by the modified Stern–

Volmer equation,  

F0/(ΔF) = F0/(F0 – F) = 1/(faKa[Q]) + 1/fa, 

in which F0 is the initial fluorescence intensity, F the fluorescence intensity after the 

addition of the quencher Q, fa the accessible fraction of the fluorophore to the quencher, and 

Ka the Stern–Volmer quenching constant for the accessible fluorophores. As shown by Figure 

4c, all the quenching curves became linear using the modified quenching equation. 

We also performed similar quenching experiments using the lipid-soluble TEMPO as 

the quencher (Figure 6a). At the higher concentration (5 mol % relative to the phospholipids), 

linear Stern–Volmer plots were obtained; thus, both compounds were fully accessible to 

TEMPO under this condition. At 0.5 mol % relative to the lipids, downward quenching plots 

were once again observed and were converted to the linear plots using the modified Stern–

Volmer equation (Figure 6b). 
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Figure 6. (a) Fluorescence quenching of macrocycles 2 () and 3 () by TEMPO. The 

dashed lines are data obtained with [oligocholate]/[phospholipids] = 0.5%  and the solid lines 

with [Oligocholate]/[phospholipids] = 5%. [Phospholipids] = 107 μM. (b) Modified Stern-

Volmer plots for macrocycles 2 () and 3 () with [oligocholate]/[phospholipids] = 0.5%. 
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Table 1 summarizes the quenching data for the two macrocycles. At 0.5 mol %, the 

accessible fractions of 2 and 3 to NaI were within experimental error—58 and 56%, 

respectively (entries 1 and 2). Interestingly, an increase in the macrocycle concentration 

made the accessible fractions (fa) of the macrocycles go to opposite directions: dicholate 2 

went from 58 to 52% whereas tricholate 3 from 56 to 64%. In other words, as more 

macrocycles entered the lipid membranes, the fraction of the macrocycles at the 

membrane/water interface increased for 3 but decreased for 2, assuming that only the 

macrocycles at the interface were accessible to NaI. 

Table 1. Quenching data obtained for compounds 2 and 3
a 

entry compound quencher fa Ka (M
-1

) 

1 0.5 mol % 2 NaI 58% 2.0 

2
 

0.5 mol % 3 NaI 56% 3.2 

3 5 mol % 2 NaI 52% 2.5 

4 5 mol % 3 NaI 64% 4.6 

5 0.5 mol % 2 TEMPO 79% 360 

6 0.5 mol % 3 TEMPO 75% 752
 

7 5 mol % 2 TEMPO 100% 788 

8
 

5 mol % 3 TEMPO 100% 523
 

a
 The quenching experiments were performed in duplicates and the relative error was 0–5% 

for fa and 0–16% for Ka. 

The quenching data so far support the better pore formation of 2 over 3. As the 

dicholate macrocycle stacks to form the TM nanopore, some of the macrocycles are located 

within the hydrophobic core of the membrane and become less accessible to NaI. It is 

significant that the NaI-accessible fraction of 3 increased at the higher concentration. Not 

only did the tricholate macrocycle fail to form TM nanopores effectively—evident from the 
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lower glucose transport activities—more of the compounds seemed to have migrated to the 

membrane/water interface at the higher concentration (see below for more discussion).              

The picture becomes even clearer when we compare the quenching data of NaI and 

TEMPO. First of all, fa was significantly higher with TEMPO (75–100%) than with NaI (52–

64%). The result probably just reflects that fact that these macrocycles are overall quite 

hydrophobic molecules and prefer to stay in the nonpolar membrane environment. Even if 

they are located at the membrane/water interface, they must be still located in a nonpolar 

environment. 
21b 

We were not surprised to see the sum of the water-accessible fraction and 

the oil-accessible fraction being greater than 100%, as fluorophores located at the 

membrane/water interface should be accessible to both NaI and TEMPO.  

Another observation was that the Stern–Volmer quenching constants (Ka) were much 

larger for TEMPO than for NaI. This difference should simply derive from the different 

quenching efficiencies of the two compounds. Moreover, the liposome solution was a phase-

separated system. Since both the macrocycles and TEMPO were located within the lipid 

bilayers, their effective concentrations in the membranes were much higher than their 

concentrations in the entire solution. Note that the quenching constants were calculated based 

on the solution concentrations. 

We also observed that both 2 and 3 became more accessible to TEMPO as their 

concentrations increased in the membranes—fa went from 75–79% to 100% (Table 1, entries 

5–8). The trend was completely consistent with the NaI-quenching data of 2, which 

suggested that more of the macrocycles migrated to the hydrophobic core of the membrane at 

the higher concentration. The trend was also in line with substantial increase of glucose 

leakage at the higher concentration (Figure 3b). For tricholate macrocycle 3, however, the 
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quenching data of TEMPO and of NaI seemed to contradict each other. How could it be 

possible for 3 to become more accessible to the lipid-soluble TEMPO and the water-soluble 

NaI at the same time when its concentration increased in the membrane? We believe the 

result might have derived from the aggregation of the macrocycle in the membrane. At 0.5 

mol % in the lipid membrane, 3 most likely existed as monomers at the membrane/water 

interface while being embedded in the membrane. The observed accessible fractions to either 

NaI or TEMPO under such a condition just reflected the location of the fluorophore. At the 

higher concentration (5 mol %), the significant glucose transport activity (Figure 3c) suggests 

that some degree of aggregation (pore-formation) was present (as mentioned earlier, carrier-

based transport was already ruled out by the unusual cholesterol effect). The accessible 

fractions (fa) under this condition, therefore, had contributions from both the monomeric and 

aggregated species. As long as the two states of 3 were in equilibrium and the aggregated 

form was accessible to TEMPO, all the macrocycles would appear fully accessible to 

TEMPO. This is because the macrocycles on the membrane surface could migrate into the 

membrane by equilibrating with the transiently stacked macrocycles, even if the latter 

represents a small fraction of the total. Meantime, when the membrane surface is crowded 

with the macrocycle (due to the latter’s high concentration in the membrane), the lipids may 

not fully shield the macrocycle from water exposure, resulting a higher accessible fraction of 

to NaI. 

Another interesting observation in the quenching experiments was that the Stern–

Volmer quenching constants (Ka) for the two macrocycles went to opposite directions with 

increasing concentrations: Ka more than doubled for 2 but decreased by 30% for 3 (Table 1, 

entries 5–8). Thus, even though both compounds became more accessible to TEMPO at the 
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higher concentration, their quenching efficiencies displayed very different trends. We believe 

that these results provide additional support for the aggregation mentioned above. When 2 

aggregated, it apparently followed the stacking model in Figure 2 quite closely and migrated 

into the hydrophobic core of the membrane. 
39 

As more of the macrocycles moved deeper 

into the bilayer, they became more easily quenched by TEMPO, which should be located in 

the hydrophobic core of the membrane due to its strong hydrophobicity. On the other hand, 

the situation was quite different when the larger, flexible macrocycle (3) aggregated. The 

pore formation was poor, evident from the lower glucose transport in comparison to that of 2. 

Under this condition, the majority of 3 should reside at the membrane/water interface. Even 

though the macrocycles were accessible to TEMPO, the quenching was inefficient because 

the fluorophore and the quencher resided at different locations in the membranes and they 

only saw each other through a rather unfavorable stacking of the macrocycles. 

 

Conclusion  

Inclusion of a natural α-amino acid (L-tryptophan) into the cholate macrocycles 

allowed us to study the pore formation of these compounds by both glucose leakage and 

fluorescence quenching. The combination of the two techniques elucidated previously 

unknown structure–activity relationship in the pore-forming macrocycles. In the water-

templated stacking model, rigidity of the macrocycle seems to far outweigh its 

amphiphilicity. Despite one fewer facially amphiphilic cholate group in the structure, 

dicholate 2 consistently outperformed tricholate 3 in the pore formation, as demonstrated by 

both the glucose leakage assays and the quenching studies. The fluorescence quenching, in 

particular, revealed different dynamics and aggregation of the macrocycles in the membrane. 
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At low concentrations, both macrocycles prefer to stay at the membrane/water interface, 

possibly to minimize the unfavorable contact between the entrapped water molecules with 

the lipid hydrocarbon (Figure 2). At higher concentrations, the rigid dimer (2) migrates inside 

the membrane to form the TM nanopore, as a result of the associative interactions of 

entrapped water molecules. The larger, more flexible trimer (3), however, could not do so as 

easily. Only a small fraction of the macrocycles stacks into nanopores while the majority 

resides near the surface. The preference for the membrane surface is presumably a result of 

the flexible structure, which allows macrocycle 3 to turn its hydrophilic face toward water to 

satisfy its solvation needs without resorting to the stacking.  
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Experimental Section 

 

General Method 

All reagents and solvents were of ACS-certified grade or higher and used as received 

from commercial suppliers. Millipore water was used to prepare buffers and liposomes. 

Routine 
1
H and 

13
C NMR spectra were recorded on a Varian VXR-400 or on a Varian MR-

400 spectrometer. Fluorescence spectra were recorded at ambient temperature on a Varian 

Cary Eclipse fluorescence spectrophotometer. Compounds 5, 
40

 6, 
25

 and 7 
25 

were 

synthesized according to previously published procedures. 
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Syntheses 

Compound 8. Compound 6 (48 mg, 0.06 mmol), compound 5 (23 mg, 0.07 mmol), and BOP 

(49 mg, 0.11 mmol) were dissolved in dry DMF (5 mL). DIPEA (0.17 mL, 1.0 mmol) was 

added. After being stirred for 12 h at 60 °C, the mixture was cooled to room temperature and 

poured into a 1 M HCl solution (5 mL). The precipitate was collected by suction filtration, 

washed with water (3 × 20 mL), dried in air, and purified by column chromatography over 

silica gel using 12:1 CH2Cl2/CH3OH as eluent to afford a white powder (60 mg, 96%). 
1
H 

NMR (400 MHz, CDCl3/CD3OD = 1:1, δ): 7.87(m, 1 H), 7.86 (m, 1H), 7.61(d, J = 7.8 Hz, 1 

H), 7.39 (s, 1H), 7.33 (s, 1H), 4.21 (s, 1H), 4.14 (s, 1H), 4.02 (s, 1H), 3.88 (br, 1H), 3.45 (br, 

1H), 3.36 (br, 1H), 2.81(br, 1H) , 2.64 (s, 1H), 1.48-2.50 (series of m), 1.38(s, 4H), 0.82 (m, 

6H). 
13

C NMR (100 MHz, CDCl3/CD3OD = 1:1, δ): 175.5, 173.2, 136.5, 128.4, 124.6, 122.4, 

119.8, 119.4, 112.3, 110.3, 73.9, 73.1, 72.3, 69.1, 68.9, 63.8, 62.6, 59.9, 54.9, 54.6, 54.3, 

47.7, 47.4, 47.3, 42.8, 42.6,42.5, 40.4, 40.2, 37.8, 37.2, 36.9,36.8, 36.4, 35.9, 35.8, 35.7, 35.6,  

34.9, 34.2, 33.8, 33.6, 33.2, 32.8, 32.6, 32.2, 31.7, 31.5, 29.7, 29.4, 29.0, 28.4, 27.9, 27.7, 

27.5, 27.5, 26.5,26.4,  24.1, 23.4, 17.9, 13.2. ESI-HRMS (m/z): [M + H]
+
 calcd for 

C62H92N7O7, 1046.7058; found 1046.7053. 

Compound 9. Similar procedure as in the synthesis of 8 was followed and afforded a white 

powder (93 %). 
1
H NMR (400 MHz, CDCl3/CD3OD = 1:1, δ): 7.87 (d, J = 7.6 Hz, 1 H), 7.82 

(m, 1H), 7.68 (d, J = 8.0 Hz, 1 H), 7.61 (d, J = 8.0 Hz, 1 H), 7.39 (d, J = 8.4 Hz, 1 H), 7.33 

(s, 1 H), 4.31(s, 2 H), 4.25 (s, 2 H), 4.19 (s, 2H), 3.98 (s, 1 H), 3.88 (br, 1H), 3.62 (s, 1H), 

3.57 (br, 1H), 2.64 (s, 1H), 2.60-1.80 (series of m), 1.63 (s, 9H), 1.29 (s, 6H), 1.06 (s, 6H). 

13
C NMR (100 MHz, CDCl3/CD3OD = 1:1, δ): 174.4, 174.2, 173.8, 172.6, 134.9, 126.7, 

122.9, 120.7, 118.8, 117.5, 110.8, 108.5, 73.9, 72.2, 71.4, 70.6, 69.4, 67.4, 67.2, 61.5, 60.9, 
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58. 2, 54.9, 54.6, 54.3, 45.7, 45.6, 41.2, 41.0, 38.7, 38.6, 35.9, 35.8, 35.7, 35.6,  35.4, 34.9,  

34.8, 34.7, 34.6, 34.5, 34.2, 34.1, 33.9, 33.8, 33.7, 33.6, 33.4, 33.2, 32.8, 32.7, 32.6, 32.3, 

32.2, 32.1, 32.0, 31.9, 31.8, 31.7, 31.6, 31.5, 31.3, 30.8, 30.6, 30.4, 29.7, 29.4, 29.0, 28.9, 

28.4, 28.3, 28.1, 27.9, 27.7, 27.5, 27.3, 26.8, 26.7, 26.5,26.4, 26.3, 26.2, 22.4, 21.7, 16.3, 

11.5. ESI-HRMS (m/z): [M + H] 
+
 calcd for C86H131N8O10, 1435.9988; found 1435.9980. 

Compound 2. Compound 8 (60 mg, 0.06 mmol), CuSO4·5H2O (75 mg, 0.3 mmol), and 

sodium ascorbate (594 mg, 3 mmol) were dissolved in a 2:1:1 mixture of THF/MeOH/H2O 

(20 mL). After the reaction mixture was stirred at room temperature for 24 h, it was filtered 

and the organic solvents were removed by rotary evaporation. The precipitate formed was 

collected by suction filtration, washed with water (3 × 10 mL), dried in air, and purified by 

column chromatography over silica gel using 12:1 CH2Cl2/CH3OH as eluent to afford a white 

powder (52 mg, 87 %). 
1
H NMR (400 MHz, CDCl3/CD3OD = 1:1, δ): δ: 7.69 (m, 1H), 7.65 

(m, 1H), 7.41 (d, J = 7.8 Hz, 1 H), 7.17 (s, 1H), 7.10 (s, 1H), 4.50-4.28 (series of m), 3.88 

(br, 9H), 3.36 (br, 1H), 2.81 (br, 1H) , 2.42 (m, 3H), 1.48-2.40 (series of m),1.38 (s, 4H), 0.82 

( m, 6H). 
13

C NMR (100 MHz, CDCl3/CD3OD = 1:1, δ): 178.6, 178.4, 175.6, 131.3, 130.9, 

127.4, 125.9, 125.4, 123.3, 122.7, 122.1, 119.7, 115.2, 114.4, 113.1, 110.7, 76.8, 75.1, 73.9, 

71.9, 71.3, 66.0, 65.4, 57.4, 50.6, 50.2, 45.8, 45.5, 45.4, 43.3, 43.1, 42.5, 39.4, 39.2, 38.9, 

37.8, 37.2, 36.9, 36.8, 36.4, 35.9, 35.8, 35.6, 34.9, 34.2, 33.8, 33.6, 33.2, 32.8, 32.6, 32.2, 

31.6, 31.2, 29.7, 29.4, 29.0, 28.4, 26.9, 26.3, 20.8, 20.7, 16.2. ESI-HRMS (m/z): [M + H]
+
 

calcd for C62H92N7O7, 1046.7058; found 1046.7057. 

Compound 3. Similar procedure as in the synthesis of 2 was followed and afforded a white 

powder (88 %). 
1
H NMR (400 MHz, CDCl3/CD3OD = 1:1, δ): 8.13 (m, 1H), 7.90 (m, 1H), 

7.45 (s, 1H), 7.21 (d, J = 6.8 Hz, 1 H), 7.13 (d, J = 6.8 Hz, 2H), 4.50 (s, 3H), 4.06 (m, 3H), 
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3.65 (br, 1H), 2.81 (br, 1H), 2.42-1.70 (series of m), 1.38 (s, 4H), 0.82 (m, 6H). 
13

C NMR 

(100 MHz, CDCl3/CD3OD = 1:1, δ): 178.8, 178.3, 178.2, 175.3, 138.6,138.3,  131.3, 130.2, 

127.4, 125.4, 122.8, 122.1, 115.3, 113.2, 73.9, 72.2, 71.4, 70.6, 69.4, 67.4, 67.2, 61.5, 60.9, 

58.2, 54.9, 54.6, 54.3, 52.4, 51.8, 50.4, 49.9, 45.7, 45.6, 44.1, 43.2, 41.2, 41.0, 38.7, 38.6, 

37.9, 37.7, 37.5, 37. 2, 36.8, 36.5, 36.2, 35.9, 35.8, 35.7, 35.6, 35.4, 34.9,  34.8, 34.7, 34.6, 

34.5, 34.2, 34.1, 33.9, 33.8, 33.7, 33.6, 33.4, 33.2, 32.8, 32.7, 32.6, 32.3, 32.2, 32.1, 32.0, 

31.9, 31.8, 31.7, 31.6, 31.5, 31.3, 30.8, 30.6, 30.4, 27.0, 26.3, 21.1, 21.0, 20.9, 16.2. ESI-

HRMS (m/z): [M + H] 
+
 calcd for C86H131N8O10, 1435.9988; found 1435. 9999. 

Liposome preparation. Unlabeled POPC/POPG large unilamellar vesicles (LUVs) were 

prepared according to a literature procedure (23a). A chloroform solution of POPC (25 

mg/mL, 198 μL) and POPG (50 mg/mL, 10.0 μL) was placed in a 10 mL test tube and dried 

under a stream of nitrogen. The residue was dried further under high vacuum overnight.  

Rehydration of the lipids was done using HEPES buffer (10 mM HEPES, 107 mM NaCl, 

pH=7.4) and allowed to continue for 30 min with occasional vortexing. The opaque 

dispersion was subjected to ten freeze–thaw cycles. The resulting mixture was extruded 

twenty-nine times through a polycarbonate filter (diameter = 19 mm, pore size = 100 nm) at 

room temperature using an Avanti Mini-Extruder. A portion (0.3 mL) of the liposome 

solution was diluted to 5.0 mL with the HEPES (10 mM HEPES, 107 mM NaCl, pH=7.4) 

buffer. The concentration of phospholipids in the stock solution was 0.86 mM. 

Fluorescence Quenching. A typical procedure for the quenching experiment is as follows. 

Stock solutions (5.0 × 10
–4

 M) of 2 and 3 in DMSO were prepared. Aliquots of the above 

LUV solution (250 μL) and HEPES buffer (1750 μL, 10 mM HEPES, 107 mM NaCl, pH = 

7.4) were placed in a quartz cuvette.  The concentration of phospholipids in each cuvette was 
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107 μM. An aliquot (13.0 μL) of the oligocholate stock solution was added via a 

microsyringe and vortexed gently for 5 s before the initial fluorescence spectrum was 

recorded. In the case of the water-soluble quencher, aliquots (10.0 μL) of NaI (7 M in the 

above HEPES buffer that contained 0.1 mM Na2S2O3) were added with a Hamilton Gastight 

syringe. In the case of the lipid-soluble quencher, aliquots (2.0 μL) of TEMPO (0.5 M in 

ethanol) were added. After each addition, the sample was vortexed gently for 5 s. The 

fluorescence spectrum was recorded over 10 min at 1 min intervals and averaged. The 

excitation wavelength was set at 330 nm. 
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1 
H NMR of compound 8 

 

 
 

 
 

 
13 

C NMR of compound 8 
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1 

H NMR of compound 2 
 

 
 

 

 
13 

C NMR of compound 2 
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1 

H NMR of compound 9 

 
 

 
 
13 

C NMR of compound 9 
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1 
H NMR of compound 3 

 
 

 
 

 
13 

C NMR of compound 3 
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CHAPTER 7 

 

CONCLUSIONS 

 

The work presented in this dissertation illustrates a simple but effective method for 

the design and synthesis of molecularly imprinted nanoparticles (MINPs) that are fully 

compatible and functional in water. The MINPs were generated from a functionalized 

tripropargylammonium surfactant that enabled double cross linking on the surface and in the 

core of the micelle, in the presence of a template and divinylbenzene (DVB) cross linker. The 

resulting MINPs contained guest-tailored hydrophobic pockets while maintaining a 

hydrophilic surface by virtue of the sugar-derived ligands incorporated onto the surface 

during the post-functionalization process.  Binding studies were performed using isothermal 

titration calorimetry and fluorescence spectroscopy to investigate the properties of the 

nanoparticles. The MINPs utilized recognition properties of an antibody for the antigen, in 

which the antigen perfectly fits into the antibody's binding site, whereas the other structurally 

related compounds are discriminated against from binding to the same site.  The fundamental 

principle relies on the imprinting technology in which binding pockets are created with 

predetermined selectivity and specificity for a given analyte. The nanoparticles resembled 

natural proteins in water-solubility, hydrophilic surface and hydrophobic core, and in their 

discrete nanosized structure.  

Noteworthy properties portrayed by MINPs include easy purification, complete 

template removal, high affinity with specific selectivity for the corresponding substrates, 

ability to functionalize the core, ability to introduce an inhibitory effect on the binding site, 

sensitivity to pH - for a functionalized core, molecular sensing of an analyte in the presence 
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of its analogues, and ability to act as monoclonal antibodies for nonsteroidal anti-

inflammatory drugs (NSAIDs); among others.  

Initial investigation of the binding properties of MINPs involved a templated 

synthesis of the nanoparticles from bile salt derivative containing dansyl group as the 

fluorescent probe. Parallel binding studies performed using ITC and fluorescence 

spectroscopy revealed 1:1 binding with high affinity and selectivity for the corresponding 

analyte. Altering the ratio of the template to the tripropargylammonium surfactant from 1:50 

to 1:25 generated two independent binding sites, each having similar binding affinity and 

selectivity to the previous one. 

Molecular sensing monitored through Förster resonance energy transfer (FRET) 

requires that the donor-acceptor pair must be within an acceptable distance for effective 

overlap between the donor emission and acceptor absorption. The average size of MINPs is 

2.5 nm in radius, including the hydrophilic surface. In our endeavors to explore this 

application of MINPs as biomimetic sensors in water, we installed polymerizable dansyl 

groups into the core of the nanoparticles during an imprinting process that involved the use 

of a naphthyl group as the template. The resultant MINPs were able to detect the presence of 

the analyte from amongst other substrates that were very closely related to the analyte in 

shape and structure.  This remarkable property portrayed by MINPs ascertains the superiority 

of its design over the traditional methods that have previously been used.  

To fine tune the binding, the imprinted pocket needs to be functionalized, preferably 

through covalent imprinting. Efforts were made toward this goal. Covalent imprinting was 

used to install an acid-functionalized hydrophobic pocket by carrying out the imprinting 

process in the presence of a photolabile o-nitrobenzyl derivative as a template. Controlled 



www.manaraa.com

174 

 

release of the template was monitored by fluorescence for a period of time before complete 

removal was acquired. Amide coupling reaction between an aminonaphthalene and the acid-

functionalized hydrophobic pocket incorporated the naphthyl group into the imprinted core, 

inhibiting the original analyte from accessing the binding site. Inhibition of the binding 

pocket is a common phenomenon in enzymatic catalysis and this property of MINPs is likely 

to broaden the understanding and application of MINPs as catalytic enzymes.  

Homogeneity of the binding pockets, typical to monoclonal antibodies, is an 

important characteristic for efficient molecular recognition. The MINPs presented here were 

investigated for their ability to respond to various NSAIDs as the antigens, with their 

monoclonal hydrophobic binding pockets tailored for either naproxen or indomethacin. The 

MINPs displayed high selectivity for their corresponding templates, while registering very 

low cross reactivity ratios for those NSAIDs bearing close resemblance to the analyte. 

In this regard, we have raised the first synthetic antibodies that bear the closest 

resemblance to their natural counterparts in function and properties. Further work is 

necessary to understand how these molecules could be utilized in biological systems as a step 

toward practical application in an attempt to substitute them for their natural counterparts. 
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